
C
ER

N
-T

H
ES

IS
-2

01
9-

34
3

29
/1

1/
20

19

Universidad de Sevilla
Departamento de Ciencias de la

Computación e Inteligencia Artificial

Optimization of high-throughput real-time processes
in physics reconstruction

A Thesis submitted for the degree of Doctor of Philosophy
Escuela Técnica Superior de Ingenierı́a Informática

Universidad de Sevilla

Daniel Hugo Cámpora Pérez

Thesis Supervisors

PhD. Agustı́n Riscos Núñez
PhD. Niko Neufeld

A mi compañera de aventuras.

C O N T E N T S

acknowledgments v
contents of the document 1

i preliminaries
1 lhcb 9

1.1 A Large Hadron Collider beauty experiment . . 10
1.1.1 Tracking subdetectors 12
1.1.2 Particle identification system 16

1.2 The Data Acquisition System 19
1.2.1 Event readout 20
1.2.2 Event building 21
1.2.3 Event filtering 23

1.3 The High Level Trigger 23
1.3.1 The LHCb software upgrade 26

2 parallel computing 29
2.1 Types of parallel processors 32
2.2 Memory . 35

2.2.1 The Roofline model 38
2.3 Graphics Processing Units 42

2.3.1 GPUs as parallel coprocessors 46

ii parallel algorithms
3 decoding algorithms 51

3.1 Velo decoding and clustering 51
3.1.1 Velo clustering 54
3.1.2 Velo estimate input size 57
3.1.3 Prefix sum Velo clusters 60
3.1.4 Mask clustering 61
3.1.5 Physics efficiency 65

3.2 UT decoding . 66
3.2.1 Overview of UT decoding 67

3.3 SciFi decoding . 69
3.4 Muon decoding 70

4 track reconstruction 73
4.1 Efficiency indicators 74
4.2 Overview of track reconstruction methods 77

4.2.1 Local methods 77
4.2.2 Global methods 79

5 velo tracking 83

iii

iv contents

5.1 Discussion . 83
6 forward tracking 87

6.1 Histogramming method 89
6.2 Looking Forward 92

7 kalman filter 101
7.1 Discussion . 103

iii framework
8 a framework for massively parallel physics

reconstruction 109
8.1 Framework design 111
8.2 Control flow . 114
8.3 Data flow . 117
8.4 Framework performance 120
8.5 Continuous integration 126

9 tracking sequence physics efficiency 129
9.1 Velo reconstruction efficiency 129
9.2 UT reconstruction efficiency 130
9.3 Forward tracking efficiency 131

10 performance analysis 139
10.1 Methodology . 139
10.2 HLT1 sequence performance analysis 142

10.2.1 Parameter scans 145
10.2.2 Velo sequence performance analysis . . . 148

10.3 Integration in Data Acquisition system 152

iv thesis results
11 conclusions 163

11.1 Summary . 163
11.2 Publications . 168
11.3 Future work . 170

appendices
a a fast local algorithm for track recon-

struction on parallel architectures 175
b an efficient low-rank kalman filter for

modern simd architectures 187

A C K N O W L E D G M E N T S

En el verano de 2010 tuve la suerte de ser escogido como Summer
Student en el CERN. Y a ese comienzo le siguieron nueve largos
años aprendiendo y creciendo, tanto en lo profesional como en
lo personal. Mucho de lo que he recogido durante mi vida aquí
está plasmado en esta tesis.

Tengo a muchos a los que agradecer. A Vero, por la felicidad
diaria que es estar junto a ella. Me encanta compartir la vida
contigo. A mis padres, por su amor y su apoyo constante. Todo
lo que he conseguido es gracias a vosotros.

Quiero agradecer a mis amigos todas las bromas que han
hecho la vida más divertida estos años. A mi amigo Lolo, que
ha pasado mucho frío, sobre todo en ausencia del gato. A mi
amigo Dani García, quien es sutil como un submarino. A los
amigasos, Álvaro, Paco, Adri y Dani Arenas, por las infinitas
risas que nos hemos echado juntos. A José, por los poemas
en portugués. A Carlos y Fátima, con los que el barco seguirá
a flote pase lo que pase. A Andrés, Zapi y Ale, por nuestras
discusiones informáticas, y a Miri, por nuestras discusiones
artísticas. A los amigos de siempre, Jesús, Rocío, Fran, Seba y
Jorge, con los que tengo un vínculo atemporal. A Fer, con el que
disfruto entendiendo las tonterías que pasan en el mundo. A
Luz, por nuestra cándida amistad. A Vlado, por las discusiones
de filosofía y de la vida. A Ome por las tardes de Smash. A
Ana, Cris, David y Shenandoah, por hacer Ginebra divertida a
ritmo de Swing. A los amigos del club de ajedrez Tenis Betis,
que alegraron Ginebra pese al frío. A Miguel, por esas tardes
de julio. A mi nueva familia almeriense, por todos los momentos
de felicidad.

He tenido la suerte de trabajar en el departamento de Ciencias
de la Computación e Inteligencia Artificial junto a geniales
compañeros que me han apoyado en todo lo que he necesitado.
En especial, muchas gracias a mi tutor y director Agustín Riscos
Núñez, quien me ha guiado y me ha enseñado lecciones muy
valiosas para convertirme algún día en Jedi. También a Mario de
Jesús Pérez Jiménez, quien me ha alentado siempre y ha sido un
modelo a seguir. Muchas gracias a David "man" Orellana Martín

v

vi contents

por las bromas lingüísticas y el buen humor diario, y a Luis
Valencia Cabrera, al que le debo todavía algún que otro queo.
A Miguel Ángel Martínez del Amor por las discusiones cuderas,
que espero que sigan por mucho tiempo. A Álvaro Romero
Jiménez y Carmen Graciani Díaz, que me recibían con brazos
abiertos cada vez que volvía a la escuela por navidad. A Luis
Felipe Macías Ramos, por los primeros pasos en la burocracia
del doctorado. A Miguel Ángel Gutiérrez Naranjo, con el que
la filosofía y la informática se mezclan en nuestras discusiones.
Muchas gracias a Fernando Sancho Caparrini, por motivarme y
ofrecerme siempre nuevas ideas. A Ignacio Pérez Hurtado de
Mendoza, por las discusiones de C++. A Juan Antonio e Isabel
Nepomuceno, por su cercanía y sus consejos.

I would also like to thank all of those who have made the
experience at CERN and its surroundings unforgettable.

Many thanks to my friend Nazim, with whom it is always
a pleasure to discuss the craziest life stories. To my friends
Kazuya and Naomi, for many travels, experiences and board
games together. Many thanks to my musical friends Mireia
Crispín Ortúzar, Gonzalo Martínez, Laura Cantagalli and John
Duxbury, who share my passion for music and have allowed
me to sing my way through Switzerland. Thanks to Schnucki,
Donal, Matevz, Gianni, Atsuko, Krina, Laura and Kate for all
the happy times together at CERN. To Jacob, for our friendship
and for his ability to stand dilemmas. To Ramón and Carmen, for
the yearly sevillanas and rebujitos we have shared. To Marco,
Rossana and Ema for their love and our stories together. To
Albi, Ludi and Thomas for our hikes and good moments. To
Xavi and Elisabet, for their friendship and support. To Arantza,
Luismi, Brij and José Mazorra, for the Allen support and for
helping give the thesis some sweet style.

Many colleagues and friends have made working at CERN a
wonderful experience. Thanks to Niko Neufeld, who has been
my supervisor, friend and office mate for the last seven years,
and has propelled my career while making it fun. Thanks to
Rainer Schwemmer, for his ingenuity, support and most impor-
tantly, our karaoke sessions. To Plácido for our work together
in Allen and the everyday discussions. To Flavio, for his contri-
butions to the forward tracking and our friendship. To Laura,
for her ARM and POWER powers. To Tommaso, for our fruitful
DAQ discussions. Thanks to the LHCb Online team for the
support, the hard work and the many barbecues. To those that

contents vii

were involved in the HTCC, especially to Omar, Jon, Sebastien,
Christian and Luca, who contributed to the early work in this
thesis. Thanks to Conor for our discussions and his comments
on the thesis. Thanks to O. Bouizi at Intel and C. Potterat for
their contributions to the Kalman filter work. Thanks to A. Hehn
at NVIDIA for his help throughout the development of Allen.
Big thanks to all the Allen team, especially to Dorothea, Roel
and Vava, for all the hard work to make the GPU HLT1 a real-
ity. Thanks a lot to the LHCb collaboration, and especially to
Ben, Marco Cattaneo and Marco Clemencic, for all the support
received throughout the years.

Finally, I am very grateful to Brian Martin, who has always
been a good influence, for opening the doors of the ATLAS
netadmin team to me and letting me into the fun of Data Ac-
quisition, and in particular for his help in proof-reading this
thesis. Thanks to my prieteni Dan, Irina, Stefan and Silvia, and
to Eukeni, for my first DAQ steps which have evolved into
friendship. Special thanks to Prof. Dr. G. Raven and Prof. Dr.
I. Kisel for providing reports for this thesis.

Muchas gracias a todos,

Daniel

C O N T E N T S O F T H E D O C U M E N T

The present document is organized in four parts, adding up to
a total of 11 chapters. Their contents are succinctly described in
the following.

Part I: Preliminaries

The first chapter introduces some basic notions of particle
physics. The LHCb detector, placed at the Large Hadron Col-
lider in the European Organization for Nuclear Research (CERN),
and all the subdetectors composing it are briefly discussed. The
Data Acquisition system of LHCb is presented in its three con-
stituent steps: Event readout, event building and event filtering.
The filtering software to which this thesis contributes is pre-
sented as the High Level Trigger. The chapter closes quantifying
the challenge the upcoming upgrade detector rates signify.

Chapter 2 introduces architectural concepts and performance
metrics of modern processors. The historical processor evolu-
tion from sequential into parallel chips is presented. The types
of parallel processors are shown, alongside various categories
of parallelism, required to make efficient use of modern pro-
cessors. The relation of memory performance with processor
performance is discussed. Several memory-related fundamental
concepts are presented, and a visual tool known as the Roofline
model to characterize processors with the relation between pro-
cessor and memory performance is described. The first part
ends with a description of Graphics Processing Units (GPUs),
an architecture for which much of the software in this thesis
has been written. GPUs are presented as coprocessors to tackle
parallel workloads, and several examples from the literature are
shown.

Part II: Parallel algorithms

Part II discusses the reconstruction algorithms contributed as
part of this thesis. The contributions are organized in five

1

2 contents

chapters that cover a variety of relevant problems in High Energy
Physics (HEP) applications, and that specifically occur in the
High Level Trigger reconstruction sequence of LHCb. All the
contributed software targets parallel multi and many-core SIMD
architectures. This thesis contributes to the following areas
of parallel software for HEP: decoding (chapter 3), clustering
(chapter 3, section 3.1), pattern recognition (chapters 4, 5 and 6)
and the Kalman filter (chapter 7).

Chapter 3 presents the decoding sequences of four LHCb
subdetectors. For each subdetector, a parallel decoding design
is presented, alongside details of the implementation developed.
For the Velo subdetector, the steps of the design are justified. An
original parallel clustering algorithm is described in depth, and
a validation of the method is presented. The design of the other
three subdetectors parallel decoding algorithms are succinctly
described in three respective sections. A similar pattern to the
Velo decoding is followed to achieve a parallel implementation
taking into account the specifics of each subdetector.

Chapter 4 introduces the main concepts and techniques re-
lated to the problem of pattern recognition of particle trajectories
(tracks). The efficiency indicators determining the goodness of
tracks are discussed, and the specifics of the criteria of LHCb
tracking detectors are presented. An overview of tracking meth-
ods, categorized into local and global methods, is described and
discussed. This chapter lays the foundations for the following
discussions on tracking in the next two chapters.

A parallel Velo tracking algorithm Search by triplet is presented
and discussed in chapter 5. The method is described in detail
in publication [1], included as appendix A of this thesis. The
preexisting sequential method is analyzed and several short-
comings are identified that prevent parallelization. A parallel
local method is designed, targeting SIMD architectures, and
CPU and GPU versions are developed. Each of the constituent
parts of the algorithm are qualified in terms of computational
complexity. The algorithm uses efficient memory structures for
SIMD architectures, and data reductions based on tight search
windows. An iterative two-step tracking procedure guarantees
no revisits of detector measurements, resulting in an efficient
access pattern to processor memory, using spatial and temporal
locality.

Chapter 6 presents a parallel algorithm for Forward tracking,
which involves extending tracks to the LHCb SciFi subdetector.

contents 3

The bending of particles due to the LHCb magnet is described,
alongside a simplified model describing its effect. The sequential
algorithm used in previous runs of the detector is presented
and discussed in depth. A parallel algorithm Looking Forward is
presented, which consists of 12 steps. The design is discussed
and each of the steps is qualified in terms of computational
complexity. A novel triplet seeding method using specialized
hardware is presented, which builds triplets similarly to Search
by triplet. The algorithm reduces branched code, and runs
efficiently on GPU architectures due to their data-parallelism.

This part ends with the contributions on the Kalman filter in
chapter 7. The chapter introduces the Kalman filter formulation
and links it with the LHCb detector use case. The publication [2]
is presented as part of this thesis in appendix B. The existing
literature is analyzed, and it is deemed necessary to develop
a solution given the specific conditions of the LHCb Kalman
filter execution. Three software algorithms are contributed: a
proto-application Cross Kalman Mathtest allows to compare per-
formance across CPU and GPU architectures; the Cross-Kalman
application mimics the conditions under which the Kalman
filter is executed in the LHCb software and serves as a cross-
architecture implementation of the Kalman filter aiming to maxi-
mize performance; the findings of the previous two applications
are integrated in the LHCb framework in TrackVectorFitter, and
the performance is validated under LHCb framework run condi-
tions. The applications use a custom scheduler to efficiently use
data parallelism in SIMD processors. Roofline models of several
processors are shown, demonstrating the arithmetic formulation
obtains the peak performance of the processors analyzed.

Part III: Framework

The software contributions of this thesis target a variety of archi-
tectures. Concretely, the LHCb High Level Trigger 1 reconstruc-
tion application was identified as a target where GPUs could be
used. However, the LHCb software was not built to efficiently
use hardware accelerators. This thesis contributes a framework
to run HEP reconstruction on GPUs (chapter 8). During the
development of this thesis, a parallel realization of the full High
Level Trigger 1 application was completed in this framework.
The physics efficiency of the sequence is presented (chapter 9),

4 contents

and the performance of the entire GPU HLT1 sequence is also
described (chapter 10).

Chapter 8 presents a framework for massively parallel physics
reconstruction Allen. The framework allows algorithms to be
run in parallel on thousands of collision events concurrently, ex-
ploiting many-core architectures. The design of the framework
and all its parts are discussed. The control flow permits execu-
tion of a defined set of algorithms. The data flow copes with
the memory capacity constraints of GPUs. The performance of
the framework is presented under various configurations, and
Continuous Integration features are shown.

Chapter 9 discusses the physics efficiency of the tracking se-
quence. The efficiency of the reconstruction after processing
three subdetector algorithms is presented. The efficiency in-
dicators of chapter 4 are used. The HLT1 physics efficiency
requirements are shown to be met.

This part finishes with a performance analysis of the HLT1
sequence run on GPUs in Allen, in chapter 10. The method-
ology of the tests is presented, and the HLT1 performance is
discussed in depth, on a variety of GPU hardware. Performance
is analyzed on its own, and as a function of price and power
consumption. The entire sequence is profiled and characterized,
and parameters are optimized through scans. Updated results of
the Velo sequence described in chapter 5 are presented. Finally,
integration considerations into a prospective Data Acquisition
System with GPU processing are discussed.

Part IV: Thesis results

The conclusions of the thesis are discussed in chapter 11. The
presented work makes significant contributions in various HEP
related software areas. It also represents the first attempt at
a reconstruction of the LHCb HLT1 trigger stage on GPUs, to
which the framework and much of the tracking sequence have
been presented. Future work will further this development and
extend upon the results presented here with the intention of
making the GPU HLT1 a production-ready environment.

contents 5

contributions

It is worth noting the following original contributions of this
document.

• The parallel decoding algorithms designs of the subdetec-
tors Velo, UT, SciFi and muons are original contributions
of the author. The entirety of the Velo and UT decoding
sequences have been implemented by the author, includ-
ing the Velo clustering design and implementation. The
parallel SciFi decoding implementation has been done in
collaboration with L. Funke, and the parallel muon decod-
ing implementation in collaboration with D. Pliushchenko.

• The Velo tracking sequence has been designed and im-
plemented by the author. The original work has been
presented in the following publication:

– D. H. Cámpora Pérez, N. Neufeld, and A. Riscos
Núñez. A Fast Local Algorithm for Track Reconstruc-
tion on Parallel Architectures. In: 2019 IEEE Inter-
national Parallel and Distributed Processing Symposium
Workshops (IPDPSW) (2019), pp. 698–707. Included as
appendix A.

• The UT tracking sequence has been done in collaboration
with P. Fernandez Declara. The following publication
stems from this work:

– P. Fernandez Declara, D. H. Cámpora Pérez, J. Garcia-
Blas, D. vom Bruch, J. D. Garcia, and N. Neufeld. A
parallel-computing algorithm for high-energy physics
particle tracking and decoding using GPU architec-
tures. In: IEEE Access (2019), pp. 91612–91626.

• The Forward tracking parallel algorithm design and the
triplet search therein is original work by the author. The
implementation has been done in collaboration with D. vom
Bruch and F. Pisani. This work represents the first imple-
mentation of the LHCb Forward tracking algorithm on
GPUs.

• The Kalman filter applications Cross-Kalman Mathtest, Cross-
Kalman and TrackVectorFitter have been designed and im-
plemented by the author. The collaboration with O. Awile
and O. Bouizi has led to an in-depth analysis of mod-
ern Intel architectures and the elaboration of the Roofline

6 contents

plots presented as part of [2]. C. Potterat has helped in
the comparison of physics efficiency performance figures.
The work has been presented in multiple occasions in the
course of this thesis:

– D. H. Cámpora Pérez. LHCb Kalman Filter cross
architecture studies. In: Journal of Physics: Conference
Series 898.3 (2017), p. 32052.

– D. H. Cámpora Pérez, O. Awile, O. Bouizi, N. Neufeld.
Cross-architecture Kalman filter benchmarks on mod-
ern hardware platforms. In: Journal of Physics: Confer-
ence Series 1085 (Sept. 2018), p. 032046.

– D. H. Cámpora Pérez, O. Awile, and C. Potterat. A
High-Throughput Kalman Filter for Modern SIMD
Architectures. In: Euro-Par 2017: Parallel Processing
Workshops. Springer International Publishing, 2018,
pp. 378–389.

– D. H. Cámpora Pérez and O. Awile. An efficient low-
rank Kalman filter for modern SIMD architectures. In:
Concurrency and Computation: Practice and Experience
30.23 (Dec. 2018), e4483. Included as appendix B.

• Finally, the Allen framework has been designed and origi-
nally implemented by the author. Further iterations of the
framework are the effort of a collaboration led coopera-
tively by R. Aaij, D. vom Bruch, and the author. The work
of Allen contains at this moment contributions of tens of
developers and several external collaborators. The physics
efficiency and performance of the framework are the fruits
of this collaborative work during the course of 18 months.

Part I

P R E L I M I N A R I E S

1
L H C B

C
ERN, the European Organization for Nuclear Re-
search, is the biggest particle physics laboratory in
the world. At CERN, a wide variety of physics exper-
iments take place, exploring fundamental questions

with regards to the composition of the universe, such as what
happened in the Big Bang, the difference between matter and
antimatter, or the nature of dark energy and dark matter.

The drive for discoveries in the particle physics domain re-
quires the latest technology in all components involved in the
detection of particle collisions. At CERN, a network of particle
accelerators accelerate particles to a speed close to the speed
of light at the Large Hadron Collider (LHC) [3], a 27-kilometer
synchrotron accelerator. High precision measurements of parti-
cle collisions are carried out in the four major particle detectors
ATLAS, ALICE, CMS and LHCb. Trigger and data acquisition
systems filter data in real-time at a rate of tens of millions par-
ticle collisions per second. A global distribution system Grid
distributes the data around the globe for posterior analysis. All
elements in this chain are state-of-the-art, and new technologies
are continuously being explored for pushing the limits of science
in the search of new physics.

The CERN accelerator complex is depicted in Figure 1.1. Two
kinds of particles, protons and heavy ions, are injected into the
accelerators at different times. Particles are accelerated through
the linear accelerator LINAC2 and the synchrotrons Booster, PS
and SPS prior to being injected into the LHC. The energy of
particles is increased within every subsequent accelerator, to a
design energy of 6.5 TeV at the LHC. Particles are collided in
each of the four major LHC detectors at a combined energy of
13 TeV .

Particles are not accelerated individually, but are rather
grouped into particle bunches. Hence, instead of individual parti-
cle collisions, crossings of particle bunches are discussed. The
probability of an actual collision happening when two particle
bunches cross is measured by the average number of collisions per

9

10 lhcb

Figure 1.1: CERN accelerator complex. Image from [4].

bunch crossing ν. Each bunch crossing is also referred to as an
event, and the event rate is measured in Hz. The design event
rate of the LHC is 40MHz, where one event occurs every 25ns.

Even though the design collision energy is not foreseen to
change, other factors impact the collision rate. The luminosity is
a metric used in accelerator physics to determine the number of
particle collisions detected N in a unit of time t to the interaction
cross section σ,

L =
1

σ

dN

dt
(1.1)

The luminosity of the LHC beam is set to increase in the
next data-taking period to start in 2021, hence increasing the
collision rate by roughly 5×. The LHC experiments are in an
upgrade phase from 2019 until 2021, whereby many components
pertaining to the detectors and data acquisition systems will be
either updated or changed completely, in the pursuit of new
physics results.

1.1 a large hadron collider beauty experiment

The Large Hadron Collider beauty (LHCb) experiment [3, 5] is
one of the four major experiments at the LHC. It is a single-arm
forward spectrometer, designed for precision measurements of

1.1 a large hadron collider beauty experiment 11

the decay channels that could explain matter-antimatter asym-
metry, also known as CP violation.

The LHCb detector will be upgraded through 2021 in order
to increase precision by 10 times on the main observables of the
b and c-quark sectors. The LHCb upgrade detector is depicted
in Figure 1.2. The ordinate coordinate system depicts the beam
line axis, Z, and is centered at the nominal collision point.

Figure 1.2: LHCb upgrade detector.

When particles collide at the point of collision placed inside
the LHCb detector in the high energy conditions of the LHC,
the original particles decay into new particles that leave traces in
the subdetector instruments conforming the LHCb detector. The
process of reconstruction consists in reproducing the conditions
under which said traces were left in the detector. The qual-
ity of the reconstruction achieved can be measured by Monte
Carlo simulations in terms of reconstruction efficiency. A higher
reconstruction efficiency leads to a better identification of the
phenomena driving particle decays, and ultimately to a better
understanding of the physics foundations therein.

The LHCb detector does not have full coverage. That is, only
a subset of produced particles will be detected at LHCb. The
coverage angle of the detector in the forward region (positive side
of horizontal axis in Figure 1.2) is of 300mrad in the XZ plane,
and of 250mrad in the YZ plane. The LHCb magnet bends
charged particle trajectories in the XZ plane, which explains the
difference in the coverage angles. A small subset of particle tra-
jectories in the backward region are measured at the first tracking
subdetector in order to identify collision vertices (cref. 1.1.1).

12 lhcb

The LHCb detector is composed of three kinds of subdetec-
tors. Tracking subdetectors detect signals in the particles path,
from which the momenta and collision vertices are derived.
Cherenkov subdetectors measure the velocity of particles. Fi-
nally, calorimeters measure the deposited energy of hadrons
and electrons. These instruments allow the identification of
individual particles by applying relations between momentum,
mass and velocity and accounting for relativistic effects.

1.1.1 Tracking subdetectors

As particles traverse the tracking subdetectors of LHCb, they
interact with detector technology placed in their path. The
problem of track reconstruction consists in determining the
particle trajectories or tracks left by each individual particle
throughout the detector.

The tracking system of LHCb [6] consists of three subdetectors:
The Vertex Locator (VELO), the Upstream Tracker (UT) and the
Scintillating Fibre Tracker (SciFi). A magnet, placed between the
UT and the SciFi, bends particles as a function of their charge in
the XZ plane. Figure 1.3 depicts the tracking system of LHCb,
alongside all possible track types.

SciFi
T1 T2 T3

T track

Long track

Downstream track

Upstream track

UT
Velo

Velo track

Figure 1.3: LHCb track types.

The subdetectors visited by each particle determine the parti-
cle track type. VELO, upstream and long tracks are produced
at the VELO. Even though the LHC beam collisions take place
inside the VELO, produced particles may decay in their path,
originating new particles in non-primary vertices. Downstream

1.1 a large hadron collider beauty experiment 13

and T tracks are produced from particle decays, and originate
from non-primary vertices.

VELO

The Vertex Locator [7] is a tracking subdetector placed very
closely to the interaction point. It consists of 52 modules placed
on sides of the beam line. Each module in turn consists of
12 chips with a resolution of 256× 256 pixels each. Figure 1.4
depicts the entire detector alongside the beam axis (top), and a
detail of one module (bottom). The VELO can be retracted while
there is no stable beam in the LHC, in order to avoid damage
and increase its lifetime.

x

z

cross section at y=0

y

x

1m

390 mrad 70 mrad

15 mrad 66 mm

interaction region showing
2 x σ ~ 12.6 cmbeam

VELO fully closed
(stable beams)

6 cm

VELO fully open

(a)

Figure 1.4: A schematic of the upgrade Velo detector.

The VELO allows for precision measurement of the collision
vertices, as well as creation of seeds for further track reconstruc-
tion in subsequent tracking detectors [8]. The LHCb magnet
does not influence particle trajectories within the VELO, and
hence particles travel in a straight line in this subdetector.

UT

The Upstream Tracker [6] subdetector consists of four planes
of silicon strips, named UTaX, UTaU, UTbV and UTbX. The
first and last planes have vertical strips, whereas the middle
planes are tilted by −5◦ and 5◦ respectively. Figure 1.5 shows an

14 lhcb

overview of the subdetector. By combining the measurements
from the tilted U and V planes, the Y coordinate can also be
determined. Each UT plane can be divided into 3 regions with
different geometries, where the inner-most region has a finer
granularity (orange in the Figure), and the outer regions have
coarser granularity (yellow and green in the Figure).

UTbX

UTbV

UTaU

UTaX

1719 mm

1528 mm

1
3

3
8

 m
m

315 mm

Figure 1.5: Overview of the UT subdetector.

The UT adds information to the tracks reconstructed in the
Velo and SciFi. The presence of a residual magnetic field allows
measuring the charge and momentum of particles. It allows
reconstruction of particles produced outside of the Velo, and of
low momentum particles that form upstream tracks.

SciFi

The Scintillating Fibre Tracker [6] consists of three stations
placed after the LHCb magnet, in the forward region. They
were designed to provide standalone pattern recognition with
a high efficiency together with high resolution in the bending
plane of the magnetic field. Each station is composed of four
layers {x,u, v, x}, with scintillating fibers orientated at {0◦, 5◦,
−5◦, 0◦} respectively. A side view of the SciFi tracking stations
is shown in Figure 1.6. Each layer is composed of 12 modules,
where the two central modules feature a cut-out to allow the
beam-pipe to pass through the detector.

Modules are composed of six layers of thin scintillating fibres
that react to the passing of charged particles by emitting light

1.1 a large hadron collider beauty experiment 15

lvT
1819mm

3
0
4
0
m

m
455.6mm 455.6mm

226.4mm41.6mm 61.6mm 20.0mm

z

y

x

y=0

z=7948mm z=8630mm z=9315mm
z=7620mm

z=9439mm

T1 T2 T3
lvMonoLayer(0-3) lvMonoLayer(4-7) lvMonoLayer(8-11)

2
4

1
7
.5

m
m

(a)

10 11 12 13 14 110 111 15 16 17 18 19

10 full modules 2 central modules

Beam-pipe hole

X

Y

Z

(b)

Figure 1.6: (a) Arrangement of the SciFi tracker detection layers. (b)
Modules within one U plane. Figure from [6].

into its fibre ends. Fibres are arranged in parallel, and a fibre
is 250µm in diameter. Silicon Photo-Detectors SiPMs are solid
state photon detection devices that detect photons into pixel
channels. Each SiPM is composed of 2 blocks of 64 channels each.
Figure 1.7 depicts a SiPM (left), a detail of several contiguous
channels with the placement of six fibres (center), and a pixel
(right).

The position of the particle can be determined with a weighted
average of neighboring fired pixel channels. Figure 1.8 depicts
this process. Photons produced in each fibre fire SiPM pixels. A
weighted average sum is then performed over the fired pixels
of each channel in order to determine the position of the par-
ticle. The signal is discriminated according to two conditions:
There must be at least one channel with a charge over the seed
threshold, and the sum of all neighboring channel charges over
the neighboring threshold must be over the sum threshold [10].

16 lhcb

1.
6

m
m

Channel pitch = 250 μm

2 x 64 channels

SiPM

57 μm

62
μ
m

96 pixels per channel

fibres

Figure 1.7: Detail of SiPM. Image from [9].
ch

ar
ge

channel

particle
channel

fib
re

sum threshold

seed threshold

neighbouring threshold

Figure 1.8: Detection of a particle position as it crosses a module.

The SciFi subdetector allows detection of long, downstream
and T tracks. Long tracks have a good momentum resolution.
Tracks reconstructed in the SciFi subdetector are further ana-
lyzed with the particle identification system.

1.1.2 Particle identification system

Muon stations

Detection of muons is a fundamental part of the physics pro-
gram of LHCb. In particular, they are required for detecting very

1.1 a large hadron collider beauty experiment 17

rare decays1 such as Bs → µ+µ−, B0s → µ+µ− or B0 → K∗µ+µ−,
which can provide evidence of New Physics.

The upgraded LHCb detector will feature four muon sta-
tions [11], as shown in Figure 1.9. The stations are placed
behind the hadronic calorimeter, and are interleaved with iron
walls that act as muon filters. The muon detectors are equipped
with Multi–Wire Proportional Chambers MWPCs, and the de-
tector is divided in several regions with a varying granularity
of MWPCs according to the expected variation in particle rate
from the central regions to the periphery.

Figure 1.9: (a) Side view of the Muon Detectors. (b) Station layout
with the four regions R1-R4 indicated.

The requirements of this subdetector are to guarantee a high
reconstruction and identification performance of muons, while
maintaining a low misidentification rate to other particle types.
These requirements were already met prior to the LHCb up-
grade, and have in fact relaxed for the upgrade as the LHCb
trigger system will be fully done in software (cref. 1.3).

Cherenkov detectors

The speed of light depends on the refractive index of the medium
of tranmission. It is possible that particles move through certain
media at a speed faster than the speed of light in that medium.
When that occurs, a cone of photons is emitted from the particle

1 The particles referenced are part of the Standard Model of particle physics.
µ are fundamental lepton particles, whereas B-mesons and K are two-quark
combinations known as mesons.

18 lhcb

at an angle θ, known as Cherenkov radiation. There is a relation
between the angle of emission of the cone of photons, the refrac-
tive index of the material or radiator n and the velocity of the
particle β [12]:

cos(θ) =
1

nβ
(1.2)

LHCb is equipped with two Ring Imaging Cherenkov (RICH)
detectors [11], RICH1 and RICH2. Each of them is composed
of a radiator gas, mirrors and Multi-anode Photon Multiplier
detectors MaPMTs. As particles move through either of the
RICH radiators of LHCb, a cone of Cherenkov light is produced.
The photons produced are reflected on a section of a spherical
mirror and a planar mirror, prior to being detected in MaPMTs.
Figure 1.10a depicts this process. The resulting image in the
MaPMTs, shown in Figure 1.10b, contains slightly deformed
circumferences that can be reconstructed and assigned to tracks,
for a precise determination of the velocity of the particle.

(a) (b)

Figure 1.10: (a) Simulation of Cherenkov photons and their reflection
off the mirrors of RICH1. (b) Simulation of detected
Cherenkov photons in both sides of RICH1.

The RICH reconstruction yields a precision measurement of
the velocity of particles through the radiator gas. When com-
bined with the momentum measured in the tracking stations,
this allows identification of individual particles. The RICH sys-
tem of LHCb provides particle identification of charged hadrons
over the momentum range 1.5–100GeV .

1.2 the data acquisition system 19

Calorimeters

The main purpose of a calorimeter is to measure the energy
deposit and position of particles. The LHCb calorimeter sys-
tem [11, 13] is composed of a hadronic calorimeter (HCAL) and
an electromagnetic calorimeter (ECAL). The system can identify
hadrons, electrons and photons. In particular, in LHCb they
enable the detection of B-decay channels containing a prompt
photon or π0.

Figure 1.11 show a front view of the LHCb calorimeters. The
hit density varies by two orders of magnitude between the sec-
tions closer to the beam pipe and the outer sections. Therefore,
the size of the cells vary accordingly. The ECAL and HCAL
absorb energy of photons, electrons and hadrons.

Outer section :

Inner section :

121.2mmcells

2688channels

40.4mmcells

1536channels

Middle section :

60.6mm cells

1792channels

(a)

Outer section :

Inner section :

262.6mmcells

608channels

131.3mmcells

860channels

(b)

Figure 1.11: (a) Electromagnetic calorimeter (ECAL). One quarter of
the detector is shown. The cell dimensions of the ECAL
are shown. (b) Front face of the hadronic calorimeter
(HCAL). One quarter of the detector is shown.

1.2 the data acquisition system

The upgraded LHCb detector will produce data at an event
rate of 30MHz with an average event size of 100 kB2, for an
estimated total throughput of 40 Tb/s. In order to cope with
the immense amount of data produced by the detector, data are
fed through a data acquisition system and filtered prior to being
stored into long-term storage.

2 The event size refers to the size of the raw data of each bunch crossing collision
event. The measurements in all subdetectors per LHCb event amount to an
expected average 100 kB, and an expected maximum of 150kB.

20 lhcb

The data acquisition (DAQ) system [14, 15] is a real-time sys-
tem3 that distributes the event fragments received from the front-
end electronics of the subdetectors composing LHCb, builds
events by combining the event fragments into coherent self-
contained contiguous blocks of data, and distributes them to
an event filter farm of commodity servers that filters data by
reconstructing events and selecting specific events that are of
interest to the current physics understanding.

The data acquisition system of LHCb is composed of the
readout system, the event builder and the event filter. Figure 1.12
presents an overview of the system, with an estimate of the
servers, links and storage required for the upgrade. Data are
read out from the detector front-end electronics into around 500
event builder PCs. Each of these PCs distribute the individual
event fragments to a single destination at a time following a
synchronized round robin scheme, through the event builder
network. Data are finally transmitted for further processing to
the event filter farm, which is expected to consist of up to 4000
commodity servers.

1.2.1 Event readout

Data from the front-end electronics of the LHCb subdetectors
are fed into the DAQ system in a distributed manner to around
500 data acquisition cards, known as TELL40s. Data are fed us-
ing 10000 simplex optical links, with a custom protocol GBT [16],
certified to operate under radiation-hardened conditions. The
front-end electronics, the TELL40s and the event builder network
are synchronized with the LHC collision frequency through the
timing and fast control system (TFC).

TELL40s are implemented as a PCI form-factor card known
as the PCIe40, connected to PCI Gen-3 slots of event builder
PCs. Each of the TELL40s receive data of a portion of the LHCb
detector through a maximum of 48 GBT links adding up to a
data rate of around 80 Gb/s. The TELL40s pack the data in
multi-event packets (MEPs), and transmit the data to a pinned

3 The term real-time is employed here to refer to a DAQ system which requires
processing a design throughput. In contrast, hard real-time DAQ systems
(such as the previous LHCb DAQ in Run 2) must also meet a tight latency
requirement. The upgraded DAQ uses a distributed RAM buffer as a readout
buffer, relaxing the latency requirement.

1.2 the data acquisition system 21

Detector front-end electronics

Event builder network

~500

100 Gbit/s

Online storage

300 GB/s
~ 100 PB
2 – 4 k
streams

Cl
oc

k &
 fa

st
co

m
m

an
ds

~10000
Point-to-point

links
Clock & fast
commands

100 Gbit/s

Sub-farmswitch Sub-farmswitch

TFCEvent builder PCs

Event filter farm
~4000 dual socket nodes

Figure 1.12: Overview of the LHCb upgrade data acquisition system.

data buffer of the event builder, ready for the event building
stage.

1.2.2 Event building

The process of event building consists in aggregating fragments
originating from subdetector signals into one coherent event,
which is needed to be able to analyze and filter the event in a
posterior step. Multi-event packets originated in the readout
stage flow from all readout units into a single builder unit. The
receiving builder unit is chosen following a round-robin selec-
tion, thus load balancing the data transmissions and evening the
throughput requirements across the builder units. This imposes
an all-to-all data dependency between the readout units and the
builder units. Once full events are built, they are further sent to
the event filter farm for reconstruction and event selection.

Since the data flows in a single direction, it is possible to fold
the system, by which each node behaves both as a readout and
a builder unit, and the full-duplex capacity of each link is used.
Figure 1.12 depicts this with a two-sided arrow between the
event builder network and the event builder PCs, that act both

22 lhcb

as readout and builder units. Figure 1.13 represents the data
dependencies of an event builder node. Data are fed from the
front-end electronics into the PCIe40 readout card inside event
builder PCs. The TFC synchronizes and controls the behavior
of said cards. MEPs produced by the TELL40 inside the PCIe40
are fed into a pinned memory location, ready to be sent to a
receiving builder unit through the event builder network. Each
PC acts both as a sender and a receiver in this scheme. Events
are built inside each event builder node, and are finally sent out
to the event filtering stage.

Each PC will sustain the population of the MEP buffer, send-
ing and receiving data to the event builder network, operating
on the data and sending the data out to the event filter farm. The
expected data throughput required in memory for each builder
node is around 500 Gb/s. Since there are no data reductions in
intermediate steps, the bisection bandwidth of the system is a
constant 40 Tb/s until the event filtering stage.

MEP

RAM buffer

PCIe40

PC

TFC

48 x GBT

to event filter
farm

PCIe40

PC

TFC

48 x GBT

to event filter
farm

..
.500 x

Event building switch

RAM buffer

MEP

..
.

..
.

Figure 1.13: Data dependencies of a bidirectional event builder.

The isolated nature of the event building network permits
using any high-performance network technology with no regard
of interoperability with other networks. An event building
simulation software across network technologies DAQPIPE [17,
18] has been developed and is currently being used to evaluate
the network technology and specifics of the traffic scheduling.

In spite of the challenging nature of the presented setup, a
full demonstrator was developed with early incarnations of

1.3 the high level trigger 23

100 G technology as of 2014 [14]. More compact solutions
may yield a better price performance ratio by condensing the
functionality of two event builders in a single node. The choice
of the event builder server directly impacts the usability of
hardware accelerators (cref. section 10.3) in the event builder as
a function of the available PCIe slots, slot width and bandwidth.

1.2.3 Event filtering

Built events from the event builder stage will be sent to an event
filter farm. The event filter farm is in charge of reconstructing
the events and selecting the interesting ones. Event selection
or triggering will be performed in two stages in software: The
High Level Trigger 1 (HLT1, cref. section 1.3) performs a selection
based on PV displacement, momentum and optional muon
identification. The available storage in each event filter node
will be used as temporary storage for the output of HLT1. A
second software trigger stage High Level Trigger 2 (HLT2) will be
processed parasitically during the execution of HLT1, and in the
downtime periods of the detector (while it is not taking data),
in a process often described as deferred triggering.

The reduction in data rate from the combined event selection
of HLT1 and HLT2 is estimated to be of a factor 1 000. Interest-
ing events are transformed into self-contained and compressed
event signatures, and are sent to the Online storage and kept
temporarily. Event signatures are further sent to the IT storage
infrastructure and to the Grid in order to perform physics anal-
yses. The infrastructure of the IT data center or the Grid will
not be discussed as they are out of the scope of this thesis.

The event filter farm will be composed of up to 4000 servers
with dual socket x86-64 architecture-based processors. Only a
subset of those servers will be newly acquired. Legacy servers
based on the Sandy Bridge architecture onwards will also be
supported by the Online system and the High Level Trigger
software.

1.3 the high level trigger

LHCb software is written using the Gaudi framework [19], a
framework for building High Energy Physics-oriented applica-

24 lhcb

tions. The two applications that are related to this thesis are
the online trigger application Moore and the offline trigger ap-
plication Brunel. Gaudi abstracts the creation of software into
algorithms, tools and component libraries. Gaudi applications
are steered through Python processes that configure the appli-
cation, including the sequence of algorithms to be run and any
exposed options.

The sole trigger of the upgrade LHCb data acquisition system
will be a software trigger known as the High Level Trigger sub-
divided in two stages, HLT1 and HLT2. HLT1 reconstructs the
subdetectors involved in the tracking system and muon stations,
whereas HLT2 is a more precise full-detector reconstruction and
selection. A schematic of the main processes involved in HLT1
and their data dependencies are shown arrowed in Figure 1.14.
The HLT1 must process the entire 30MHz of events and perform
a 30:1 data selection.

Velo

UT

SciFi

Muon

Decode
raw banks

Decode
raw banks

Decode
raw banks

Decode
raw banks

Clustering Tracking

Tracking

Tracking

Matching

Kalman filter

Find primary
vertices

Figure 1.14: Main algorithms of High Level Trigger 1 sequence (HLT1).

An overview of the HLT1 processes is presented:

• Velo reconstruction – Raw Velo data are first decoded
into 8-pixel containers known as superpixels (SPs). Only
fired SPs are received as raw data. The problem of Velo
clustering consists in transforming the input data into hits
in the Velo subdetector, where each hit is represented with
its R3 coordinates and a unique identifier. The problem
involves extracting information from sets of 8-connected
pixels, a version of connected component analysis. Particle
trajectories or tracks are then reconstructed from hits. The
LHCb magnet does not influence the Velo subdetector, and
therefore Velo tracks are straight lines. Velo tracks serve
as seeds for the subsequent subdetectors reconstruction.

1.3 the high level trigger 25

• Primary vertex finder – The vertices where particles origi-
nate after the LHC beam collisions are known as primary
vertices, as opposed to vertices from particles originating
in decays. The primary vertex finder combines forward
and backward tracks found in the Velo reconstruction, to
reconstruct the primary vertices of individual collisions.

• UT reconstruction – Raw UT data are decoded into UT
hits. The UT reconstruction sorts the UT hits to facilitate
finding compatible hits. Velo tracks are extrapolated into
the UT planes, and a minimum of three hits in three dif-
ferent planes are required to form a UT track from a Velo
track. UT tracks are fitted using a parabolic trajectory,
incorporating a slight deviation introduced by the weak
effect of the LHCb magnetic field in the UT.

• SciFi reconstruction – Raw SciFi data are decoded into
pre-sorted and pre-clustered SciFi hits. Only long tracks
are reconstructed at the HLT1 stage, by extrapolating Velo
and UT tracks into the SciFi stations. For UT tracks, the
momentum measured in the UT subdetector is used to
obtain a better estimate of the deviation of the particle
through the magnetic field. The reconstruction of SciFi
long tracks faces computationally expensive problems such
as the estimation of particle trajectories through a magnetic
field, detector inefficiencies and fake track reductions.

• Kalman filter – The Kalman filter is a software estimator
widely used in literature to estimate objects trajectories
(see chapter 7). In HEP it is commonly used to estimate
particle trajectories with a precise error covariance matrix
that integrates both the mathematical model of trajectories
and the uncertainty due to scattering. A simplified Kalman
filter is applied to reconstructed tracks for an accurate
estimation of their impact parameter, and to reduce fake
tracks.

• Muon reconstruction – After the decoding of muon sta-
tions raw data, the identification of muons can be per-
formed following one of two strategies: Either taking the
UT or long tracks as input.

• Data reduction algorithms and selections – Configurable
data reduction algorithms permit to filter out events ac-
cording to factors like their detector occupancy or the
impact parameter of tracks. Finally, selection algorithms

26 lhcb

filter events that have been fully reconstructed, and decide
whether to keep or discard them according to predefined
criteria in accordance with the LHCb physics program.

1.3.1 The LHCb software upgrade

The present chapter conforms the design ambitions of the LHCb
upgrade program, as described in the Technical Design Report [14].

The LHC detectors such as LHCb evolve during their lifetime.
Hardware replacements may be performed during technical
stops, improving the resolution and performance of the detector.
The experience acquired in the first runs of the detectors revealed
possible improvements, which may impact the physics goals of
the experiment. The TDR describes the indended upgrades of
the detector making educated guesses on the hardware available
and the evolution observed in the last years.

In particular, the LHCb upgrade removes the hardware level
trigger which was used in Runs 1 and 2 of the detector. The
hardware level trigger did a 30:1 selection of the events accord-
ing to partial subdetector information. In contrast, the upgrade
software level trigger (HLT) performs a selection based on full
detector tracking, which allows to more efficiently select inter-
esting events. In combination with the increased luminosity, the
projected data increase to be processed in software is estimated
to be 40×.

The required hardware and software improvements to cope
with the increase in data rate were predicted in the TDR, with
associated unknowns in terms of computing infrastructure and
the performance of the software codebase on upcoming hard-
ware. However, the code performance and compute resource
cost were underpredicted. Progress was closely monitored as
algorithms for the new detectors were being written, and in
2016 it was determined that there was a shortfall of between 6
to 10 × less performance than expected.

This figure was far beyond any of the built in contingencies
in the budget. As a consequence, the software codebase was
benchmarked and profiled, and new algorithms were developed
where necessary. In addition, different computing models and
alternative hardware architectures were explored to see if they
could be exploited within the constraints of the planned system.
The LHCb physics reconstruction became therefore a real-time

1.3 the high level trigger 27

software challenge, whereby the design performance of the
system would have to be met within the hardware constraints.

2
PA R A L L E L C O M P U T I N G

T
raditionally, software has been written for serial
computing [20]. Serial programs are broken down
into a discrete list of instructions, and are run se-
quentially on a single processor. Determinism is

preserved by guaranteeing the order of execution of instructions,
strictly following the logic specified in the algorithms composing
the program.

The performance of a serial program is determined by the
time it takes to run, or runtime. The runtime of a program
depends on factors related to how the program is written and
on the processor it runs on. Comparisons between program
runtimes are measured by comparing the slower program to
the faster program as equation 2.1 shows. The metric name is
Speedup, and is measured in a unitless manner in × (times).

Speedup =
tslower
tfaster

(2.1)

During the last decades, the number of transistors in inte-
grated circuits has increased exponentially. This observation,
known as Moore’s Law [21], has held true since the early days of
integrated circuits in the 60s. The scale of integration is classi-
fied into small-scale, medium-scale, large-scale and very large-scale,
referring to the number of logical gates in an integrated circuit.
Since the 80s, the term very large-scale integration (VLSI) has been
coined and maintained to refer to any chip with more than
10 000 gates [22]. Dennard’s Scaling Law [23] can be seen as a
consequence of Moore’s Law. It states that as transistors shrink
in size, they become faster, consume less power and are cheaper
to produce. Modern computer processors are chips that consist
of billions of transistors.

Three areas that have lowered serial program execution run-
times due to higher transistor integration are clock frequency,
execution optimization and cache. The clock frequency deter-
mines the time it takes the processor to complete an execution
cycle. It holds a linear dependency with the runtime of the

29

30 parallel computing

program. Execution optimization refers to a set of techniques to
minimize the amount of cycles it takes to execute instructions,
also known as cycles per instruction (CPI). Cache is an on-chip
memory with fast access latency and throughput. Modern pro-
cessors have a hierarchically structured cache into several levels
of increasing speed and decreasing size.

Higher clock frequencies, better execution optimizations and
bigger and faster caches led to a steady increase in serial pro-
grams performance for several decades. However, the trend
stopped around 2004 due to heat and power consumption is-
sues. Figure 2.1 shows the evolution of transistor integration,
clock speed and power consumption. The red tendency line
shows the performance as a function of clock speed flattening
around 2004. H. Sutter qualified this phenomenon with the
phrase the free lunch is over [24], noting that efficient programs
would have to evolve and not rely on serial computing alone.

Figure 2.1: Evolution of transistor count, clock speed, power consump-
tion and performance per clock speed. Image from [24].

Parallel computing consists in the simultaneous execution
of sections of a problem. Parallel processors are composed
of multiple cores. Multi-core processors are equipped with up
to tens of cores, whereas processors with hundreds of cores
or more are called many-core processors. Problems that have

parallel computing 31

sections that can be parallelized, also called parallelizable, can be
executed more efficiently on parallel processors.

The runtime of a program executed in a parallel processor is
measured as the elapsed real time or wall time of the program
execution, irrespective of the number of computing resources
employed to solve it. Amdahl’s law [25] establishes a relation
between the speedup attainable on a program of a fixed size,
with a parallelizable fraction p and n processing units, shown in
eq. 2.2. This relation is referred to as strong scaling. The number
of resources employed affects the runtime of the program, and
the parallelizable fraction plays a determining role in the scale
of the speedup, as shown in Figure 2.2.

Speedup =
1

1− p+
p

n

(2.2)

1 10 100 1000 10000
Number of processing units

1

10

Sp
ee

du
p

Paralelizable portion
50 %
75 %

90 %
95 %

0 50 100 150 200 250
Number of processing units

0

50

100

150

200

250

Figure 2.2: Amdahl’s law (left) and Gustafson’s law (right).

A different perspective can be obtained by fixing the execution
time of a process. Gustafson’s law [26] defines the theoretical
speedup attainable on a program of a fixed execution time, with
a parallelizable fraction p and using n processing units, shown
in eq. 2.3. Gustafson argues that this relation, known as weak
scaling, takes into account that as the computing resources in-
crease, more aspects of a problem may be analyzed which would
otherwise not be considered. The scaling of both laws is de-

32 parallel computing

picted in Figure 2.2. Amdahl’s law is shown with a logarithmic
scale (left), and Gustafson’s law with a linear scale (right).

Speedup = n+ (1−n) · (1− p) (2.3)

During the last twenty years, processor manufacturers have
transitioned to providing an increasing number of cores on
processors. In order to make an efficient use of multi- and
many-core processors, codebases likewise must transition to
using programming models and algorithm designs that take
into account the underlying parallel hardware.

2.1 types of parallel processors

Flynn’s taxonomy [27] divides processors into four categories
as a function of the number of concurrent instructions streams
and the data instructions the processor operates on, as shown
in table 2.1. SISD processors issue one instruction operating on
one data at a time. Old desktop machines and mainframes fit in
this category. In the MISD category, a processor issues multiple
instructions operating on the same data at a time. This model
is used in fault tolerant environments. SIMD processors issue
a single instruction operating on several data at a time. The
SIMD model is implemented in modern processor cores through
vectorization or multiple threads (SIMT). Finally, MIMD pro-
cessors operate on several data independently, issuing multiple
instructions operating on multiple data concurrently.

Single Instruction Multiple Instruction
Single Data SISD MISD

Multiple Data SIMD MIMD

Table 2.1: Flynn’s taxonomy.

Modern desktop and server processors are realizations of
MIMD processors. Various degrees of parallelism [20] co-exist
and must be considered in order to make an efficient use of
parallel processors. Parallelism can be obtained at the level of
data, instructions, threads and processes.

Data parallelism is realized in modern hardware through
functional units dedicated to that end. The x86-64 architecture

2.1 types of parallel processors 33

is a family of 64-bit processors1. Multiple data execution is
achieved in these processors through the use of wider registers
and an extended Instruction Set Architecture (ISA). The sets of
extensions in x86-64 processors are shown in table 2.2. These
extensions are called vector extensions and refer to the processor
capability to execute a number of instructions (vector width) onto
its specialized functional units (vector units). The availability of
an extension can be checked against the processor flags. Similar
extensions exist on other hardware architectures, such as Neon
in ARM processors or Altivec in Power processors.

SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT 128-bit
AVX, AVX2 256-bit

KNC, AVX512-family 512-bit

Table 2.2: Vector extensions and their corresponding register widths.

Instruction-level parallelism (ILP) refers to the number of
instructions executed in parallel in a processor. Two metrics are
associated with this type of parallelism. Sequential processors
measure the number of cycles per instruction (CPI, lower is bet-
ter), whereas for parallel processors instructions per cycle (IPC,
higher is better) is used instead. Both metrics are equivalent. It
is uncommon for a sequential processor to achieve a CPI smaller
than one, and for a parallel processor to achieve an IPC smaller
than one in a program is usually an indication the code is not
properly optimized.

The following concepts are associated with ILP:

• Pipelining – Instruction execution on a processor is a task
that can be divided in stages, which are performed by
functional units or ports. This division permits to pipeline
several instructions, such that a different stage is being per-
formed on each instruction. Primitive processor designs
divide instructions in fetch or issue (the next instruction to
be executed is retrieved), decode (the instruction is iden-
tified and the operands are decoded), execute (arithmetic
operations are carried out), memory access (read or store
instructions are executed) and write back or commit (the
operation is finally performed). An efficient processor
design maximizes the potential parallel use of its ports,
accounting for the latency of each stage.

1 x86-64 has been implemented by various manufacturers, most commonly
Intel and AMD.

34 parallel computing

Pipelining requires knowing or determining the order of
execution of instructions in advance. Jump instructions
break the linear execution order. Branch prediction units
predict the result of jump conditions and keep a track of
last results, improving processor utilization. Certain ISAs
allow developers to impact the branch prediction unit by
specifying the likeliness of a jump to be taken.

• Multiple issue – Superscalar processors allow to issue sev-
eral instructions at a time. This design choice requires a
duplication of ports across all stages, and verifying the
instructions can be completed in parallel, checking no data
dependencies exist. The verification may be done at run-
time, in dynamically scheduled processors, or at scheduling
time on processors that require static scheduling, such as
VLIW processors.

The requirements to exploit ILP are hard to predict and pro-
cessor dependent, and often the task to optimize ILP is left to
hardware developers.

Thread-level parallelism (TLP) consists in specifying differ-
ent units of work from a control perspective, to be executed
independetly in processor cores. In contrast with ILP, the con-
trol of the work assigned to each thread is left completely to the
developer. It is worth distinguishing several types of TLP:

• Fine-grained multithreading – The developer creates and
joins threads explicitly, and assigns the work each thread
will do. The underlying hardware executing the code can
also be specified. This method grants a fine-grained control
to the developer of the computing resources utilized and
the memory assigned to each resource. In particular, it
permits the developer to select processors in multi-socket
systems, and cores in processors with simultaneous multi-
threads2, which impact the performance of applications.

• Task-based multithreading – The work is divided into tasks,
which are then automatically mapped to processor cores.
The developer has no control of the assignment of the task
to a specific thread. Dependency graphs permit to specify
a list of data and control dependencies between tasks,

2 Simultaneous Multi-Threading (SMT) or Hyperthreading is a hardware
technology of some processors that exposes multiple logical cores for each
physical hardware core. This technology allows processors to prevent stalls
by executing multiple threads with the ports of a single core.

2.2 memory 35

such that tasks will be executed as their dependencies are
fulfilled.

Finally, process-level parallelism (PLP) refers to expressing
the work into several independent processes, which are sched-
uled and managed by the operating system. A process can be
assigned a precedence, increasing (decreasing) the probability
it will be scheduled. Processes are a coarser-grained level of
parallelism, which may be assigned to a specific core or proces-
sor. PLP can also be implemented across multiple computing
nodes, and message passing libraries such as MPI facilitate the
instantiation and communication between processes.

The operating system can interact with processes through
signals. When a signal is caught in a process, the execution
context is saved and the context is shifted to a function handling
the process signal. Once the signal has been handled, and if
the process did not terminate, the control is returned to the
previously executing context, and computation is resumed.

The four levels of parallelism discussed offer orthogonal con-
siderations when developing a parallel program. A more in-
depth discussion can be found in [20].

2.2 memory

During the last decades, memory performance has not pro-
gressed at the same pace of that of processors. Figure 2.3 depicts
this effect, normalized to the performance of processors and
memory to 1980, where the performance axis is in logarithmic
scale. The performance increase of processors until 2005 was of
1.25× per year, whereas from there after it is 1.20×. In contrast,
memory has steadily increased its performance at a rate of 1.07×
per year.

The gap in performance between memory and processors has
widened over the years, and therefore memory access-related
issues are increasingly important to produce efficient programs.

Computer memory is organized in a hierarchical manner,
where memory capacity and latency are directly correlated.
Processors use low-latency registers to store operands of instruc-
tions, with a varying amount of registers available by processor
model. On-chip cache memory is organized in layers, identified
by its level, commonly L1, L2 and L3. Dynamic random access

36 parallel computing

1

100

10

1,000

P
e

rf
o

rm
a

n
c
e

10,000

100,000

1980 2010200520001995

Year

Processor

Memory

19901985

Figure 2.3: Memory performance versus processor performance in the
last decades. Image from [28].

memory (DRAM) can hold entire applications, and finally I/O
devices are used as a persistent storage system. Common sizes
and speeds of all these memories are shown in Figure 2.4.

Memory
busCPU

Register
reference

C
a
c
h
e

Cache
reference

Registers
Memory

Memory
reference

I/O devices

Disk
memory

reference

I/O bus

Size:
Speed:

500 bytes
250 ps

64 KB
1 ns

1 GB
100 ns

1 TB
10 ms

Figure 2.4: Memory hierarchy. Image from [28].

The difference in latency for accessing the next levels in the
hierarchy are several orders of magnitude, and it is desirable
to trigger memory accesses only when it is necessary. The
principle of locality is an empirical result that states that when
a memory location is accessed (1) it is probable that it will
be accessed again shortly, an effect also known as temporal
locality, and (2) it is probable that increasing memory locations
in the immediate vicinity are also accessed, also known as spatial
locality. The effects of locality are exploited in cache memories.
When memory is read, a contiguous chunk of memory of a
predetermined size is retrieved, referred to as cache line. Memory
is kept in cache, and the upper levels of cache and memory are
updated only when necessary, according to the cache write
policy.

2.2 memory 37

Since cache memories cannot store a complete map of the
application’s memory, the position of a memory location is
transformed to a position in cache. The destination location is
determined by shifting the memory location as many bits as
required by the cache line size and retrieving the least significant
bits. The resulting location may collide with pre-existing data in
cache, which requires removing the pre-existing data from cache
and updating the upper memory level according to the write-
policy. A number of collisions can be sustained by configuring
the cache memory with an n-way associativity, which results in
a trade-off between memory space and resiliency for memory
location collisions.

An indicator of how efficient cache memories are being uti-
lized is the cache hit and miss rates of a program. The expected
hit and miss rates depends theoretically on the program under
analysis. Both instruction and data caches exist, although the
former is usually ignored as a program’s code undergoes many
difficult to predict transformations prior to resulting in the list
of instructions visible by the processor.

Memory architectures influence memory access times. Uni-
form memory access (UMA) systems guarantees an equal access
time to a shared memory across all processing units. In non uni-
form memory access (NUMA) systems, the time to access memory
depends on where the memory resides. NUMA systems may
be non-uniform at different levels, such as cache or main mem-
ory. In some cases control is given to the developer to manage
and pin memory for processes in order to avoid inter-domain
memory accesses.

Memory structures play a role in the efficiency of memory
operations. In an array of structures (AOS), each structure stores
its members contiguously. Further elements in the array are
stored in this manner, and each structure in the array is stored
next to each other. In contrast, an structure of arrays (SOA) stores
same structure elements in the array contiguously. Array of
structure of arrays (AOSOA) is a mix between the two previous
structures, where a stride size s is chosen. Array elements are
then stored in SOA in groups of s elements, resulting in an array
of contiguous SOA structures.

Figure 2.5 shows an AOS, SOA and AOSOA of stride 4, for
the structure {x,y, z}. A sequential code would benefit from
the AOS datatype, as accesses to one parameter are likely to
be followed by accesses to the other parameters by the spatial

38 parallel computing

locality principle. Data-parallel architectures would benefit
from SOA – if the vector unit performs the same operation
across datatypes, it will fetch all values with one cache line
data access. AOSOA datatypes are used in conjunction with
a particular vector width, to further optimize the data access
pattern by aligning the data boundaries with the vector width.
The fetched data with a single access to x0 is shown in green for
all configurations in the figure, assuming the structure elements
are double precision floating point numbers, and a cache line
size of 64 bytes. If executing on a vector width of 4, (c) is
likely the most advantageous, since the x and y values will be
populated in cache.

x0 y0 z0
x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5
x6 y6 z6
x7 y7 z7

(a)

x0
y0
z0

x1
y1
z1

x2
y2
z2

x3
y3
z3

x4
y4
z4

x5
y5
z5

x6
y6
z6

x7
y7
z7

(b)

x0
y0
z0

x1
y1
z1

x2
y2
z2

x3
y3
z3

x4
y4
z4

x5
y5
z5

x6
y6
z6

x7
y7
z7

(c)

Figure 2.5: From left to right: AOS, SOA and AOSOA of stride 4 for
structure {x,y, z}. In green, cache line access triggered by
access to x0, assuming x, y and z are double precision
floating point numbers, and a cache line size of 64 bytes.

When data is not contiguous and requires accesses to mul-
tiple memory locations, the terms gather and scatter are used.
Gather and scatter operations are often necessary in data par-
allel workloads, but an abuse of these operations may lead to
an inefficient program. Memory alignment also affects data par-
allel architectures, which distinguish aligned data accesses from
misaligned data accesses, with different operation microcodes for
each. Aligned data accesses are preferred and lead to faster
code, where possible.

2.2.1 The Roofline model

The arithmetic intensity of a program is its number of floating
point operations divided by its number of bytes loaded and

stored into memory, and is measured in
FLOP

B
. It is possible

2.2 memory 39

to characterize the performance attainable on a processor, in
terms of FLOP/s, as a function of the arithmetic intensity. Con-
ceptually, if the arithmetic intensity of a program is below a
threshold defined by the peak processor performance and the
fastest memory where the data is expected to reside, then the
performance of the program is bound by memory bandwidth
rather than by the peak processor performance. Given the gap
between memory and processor performance increase in the
last decades, it is likely that more and more programs become
memory bound.

The Roofline model [29] is a visual performance model that
characterizes in a condensed manner the peak performance
attainable by a processor under various conditions, and the
empirical performance obtained by one or several programs.
Figure 2.6 shows the Roofline model of processor Intel Xeon
Haswell E5-2683. The model is composed of various roofs, that
depict the peak performance with respect to processor tech-
nologies (compute bound), and the peak performance when a
program is subject to a particular memory bandwidth (mem-
ory bound). Three roofs related to the Haswell processor are
shown. A program consisting solely of double precision (DP)
floating point scalar arithmetic would have a theoretical peak
performance of 48.38 GFLOP/s. If the program is vectorized,
the theoretical peak performance would be 204.04 GFLOP/s.
If the program uses fused multiply-add (FMA) instructions, the
theoretical peak performance would be 391.07 GFLOP/s.

On the other hand, four roofs are defined that are dependent
on memory and cache bandwidth. If the program solely relies
on accesses to main memory (DRAM), which has a bandwidth
of 44.76 GB/s, then the peak performance is capped by the
relation between arithmetic intensity and bandwidth. Similarly,
the relation between peak performance and arithmetic intensity
of the program if all memory accesses occur in any of the cache
levels are also depicted.

For instance, let us consider the pseudo-code for two different
programs, shown in listing 2.1. The first is saxpy, a well known
benchmarking program. Let us assume x and a to be input
variables, y to be an input and output variable, and both x and
y to have six elements. The second example is the Cholesky de-
composition for 3× 3 matrices. Let us assume that C is an input
array of six elements, and L is an output array of six elements.
All variables and operations shown are using double precision,

40 parallel computing

0.03 0.12 0.50 2.00 8.00 32.00
Arithmetic intensity (FLOP/Byte)

0.25

1.00

4.00

16.00

64.00

256.00

1024.00

Pe
rfo

rm
an

ce
 (G

FL
OP

/s
)

DP FMA roof (391.07 GFLOP/s)
DP vector roof (204.03 GFLOP/s)

DP scalar roof (48.38 GFLOP/s)

DRAM BW (4
4.76 GB/s)

L3 BW (2
63.73 GB/s)L2 BW (1
724.15 GB/s)

L1 BW (5
533.40 GB/s)

Figure 2.6: Roofline model characterizing processor Intel Xeon
Haswell E5-2683.

and FMA units are used, whereby multiplications followed by
additions or substractions count as a single operation. Table 2.3
characterizes both sample programs.

Program Loads (B) Stores (B) FLOP Arithmetic intensity (FLOP/B)
saxpy 13 · 8 6 · 8 6 0.04

cholesky3x3 6 · 8 6 · 8 16 0.17

Table 2.3: Arithmetic intensity of sample programs.

The arithmetic intensity obtained for saxpy is 0.04 FLOP/B,
whereas for cholesky3x3 it is 0.17 FLOP/B. If the programs
would be executed on the server equipped with the Haswell
E5-2683 processor, the peaks would be as shown on Figure 2.7.
Assuming data is read and written to main memory, the pro-
grams would be memory bound to 1.8 GFLOP/s and 8 GFLOP/s
respectively, which represent 0.5% and 2% of the maximum per-
formance the processor could deliver.

The creation of a Roofline model requires processor-specific
and program-specific knowledge. The roofs of a processor re-
quire knowing its peak performance under several conditions,
and the memory throughput of its available memories. It is
possible to obtain these quantities theoretically or by employing
simple benchmark programs and determining the roofs empir-
ically. Similarly, the arithmetic intensity of a program can be

2.2 memory 41

1 void saxpy(double* x, double* y, double a) {

2 y[0] = x[0] * a + y[0];

3 y[1] = x[1] * a + y[1];

4 y[2] = x[2] * a + y[2];

5 y[3] = x[3] * a + y[3];

6 y[4] = x[4] * a + y[4];

7 y[5] = x[5] * a + y[5];

8 }

9

10 void cholesky3x3(double* C, double* L) {

11 L[0] = sqrt(C[0]);

12 double L_inv = 1.0 / L[0];

13 L[1] = C[1] * L_inv;

14 L[3] = C[3] * L_inv;

15 L[2] = sqrt(C[2] - L[1] * L[1]);

16 L_inv = 1.0 / L[2];

17 L[4] = (C[4] - L[3] * L[1]) * L_inv;

18 L[5] = sqrt(C[5] - L[3] * L[3] - L[4] * L[4]);

19 }

Listing 2.1: Sample programs.

saxpy
cholesky3x3

0.25

1.00

4.00

16.00

64.00

256.00

1024.00

Pe
rfo

rm
an

ce
 (G

FL
OP

/s
)

0.03 0.12 0.50 2.00 8.00 32.00
Arithmetic intensity (FLOP/Byte)

Figure 2.7: Roofline model of Intel Xeon Haswell E5-2683 populated
with saxpy and cholesky3x3 arithmetic intensities.

42 parallel computing

determined either theoretically or by reading the assembly code
of a compiled program. Complex algorithms involving branch
instructions are harder to quantify both in terms of arithmetic
intensity and peak throughput.

The Roofline model is a visual tool that permits to abstract
various technical concepts in a single image. It can be used
for profiling what the status of the program is, and what is
preventing the program to obtain a better performance. It also
allows to make predictions to either different hardware, or
different arithmetic intensities, such as the result of moving to
different floating point precisions.

2.3 graphics processing units

Graphics Processing Units, or GPUs, are parallel processors
specialized to deal with image and video processing. In the early
2000s, the graphics processing pipeline executed on a GPU was
homogeneized in several stages dealing with geometrical and
rasterization calculations [30], and it was allowed to program
parts of the pipeline using shaders, small programs which would
run on GPU hardware.

Shaders were initially written in specific GPU domain lan-
guages. Through the use of shaders, GPUs became programmable
not only for graphics processing, but for any kind of application.
The use of GPUs for general purpose computing, or GPGPU, has
expanded in recent years. GPUs can be programmed for general
purpose computing currently through language extensions like
CUDA, OpenCL [31] or HIP, and GPU-specific development en-
vironments consisting of profilers, debuggers and development
tools are available. A GPU requires to be executed with a host
CPU, whereby the GPU is used to accelerate a portion of the
computation. GPUs are being adopted as computing accelera-
tors for various workloads, and hundreds of the supercomputers
in the Top 500 [32] are equipped with GPU accelerators.

For the purposes of this thesis, the author will focus on de-
scribing the general architecture of modern NVIDIA GPUs,
which for the most part are applicable to other commercially
available GPUs. A modern NVIDIA GPU consists of dozens of
Streaming Multiprocessors. Figure 2.8 shows a schematic of one
such processor from the Fermi architecture. The memory of the
processor (in blue) is composed of an instruction cache, regis-

2.3 graphics processing units 43

ters, a configurable L1 cache and a uniform cache. Each control
unit (in orange) manages warp of threads in groups of 32 threads.
The warp scheduler and the dispatcher assign computation to the
computing resources of the GPU (in green). Each Streaming
Multiprocessor is equipped with two sets of 16 CUDA cores,
consisting of a floating point and an integer functional unit,
which perform basic 32-bit arithmetic operations. The function-
ality is complemented by special functional units (SFUs) which
execute trascendental instructions like sin, cosine, reciprocal and
square root. The load / store (LD/ST) units allow to transfer
data back and forth to cache and DRAM.

Figure 2.8: Schematic of a Streaming Multiprocessor inside a GPU.

GPU processors are of the Multiple Instruction Multiple Data
type in Flynn’s taxonomy. Each individual warp scheduler

44 parallel computing

dispatches an instruction on up to 32 threads at a time, in a
model known as Single Instruction Multiple Thread (SIMT).

The CUDA programming model divides the work in two
groups. Blocks of threads are composed of at most 1024 threads,
and execute on a single SM. Threads within a block can commu-
nicate with each other, and can be synchronized with a thread
barrier. A grid of blocks is meant to execute independent work-
loads across the GPU. Any CUDA function is executed by a grid
of blocks of threads, and is referred to as a kernel. Several kernels
may be executed concurrently on the GPU in separate CUDA
streams, and the resource usage is determined by a dynamic
GPU scheduler. Both the grid of blocks and the block of threads
may be specified using either a 1-, 2- or 3-dimensional array.
The indices of the executing thread and block can be accessed
at all times through specialized keywords.

GPUs have a complex memory hierarchy composed of several
layers. Figure 2.9 shows the thread and memory organization of
a GPU. For each execution context (left), the available memory
buffers specific to that context are shown (right).

The fastest memory available on GPUs are thread registers.
The number of registers in a thread vary depending on the GPU
model. When the number of registers available is exceeded, reg-
ister spilling occurs, whereby registers are stored in local memory.
Local memory is only available to the thread writing it, and it is
stored physically on global memory (DRAM). Local memory
utilization is determined by the compiler, either when large ar-
rays or structures are used, or when the aforementioned register
spilling occurs. Local memory is cached, so the performance
impact is diminished if sufficient L1 cache memory is available.

Blocks of threads have access to shared memory. Shared
memory is an addressable memory that resides in L1 cache, and
the amount of memory available for L1 cache and for shared
memory is configurable. A total of 64 kB are available for
each Streaming Multiprocessor, of which 16 kB are L1 cache,
16 kB are dedicated to shared memory, and the additional 32 kB
are configurable by the developer. It is possible to choose the
configuration of each specific kernel individually. NVIDIA
GPUs have two cache levels. While L1 cache is available to each
SM, L2 is shared between all SMs.

Global memory is the largest memory available on GPUs, dozens
of GBs in capacity. Global memory is cached and available to

2.3 graphics processing units 45

Thread

Block of threads

Kernel (grid of blocks)

registers

local memory

shared memory

global memory

constant memory

texture memory

Figure 2.9: CUDA thread and memory organization.

all threads in the kernel and the host. Constant memory is a
read-write memory for the host, but it is read-only for the GPU.
A small dedicated read-only cache is available globally to cache
constant memory, with a capacity of tens of kB. Texture mem-
ory, similarly to constant memory, is read-write for the host
and read-only to the GPU. Cache locality of texture memory
is defined as a 2D-lattice, whereby elements close in the lattice
will benefit from cache locality, as opposed to the 1-dimensional
locality behavior of other memories.

As GPU memory resides in the graphics card, any communi-
cation to and from the host must be done over the PCIe network.
GPUs allow to transmit using the full-duplex capability of the
channel while executing code. Therefore, it is possible to hide
the latency introduced by these transmissions by creating a

46 parallel computing

pipeline of two-way transmission and execution on separate
CUDA streams.

Newer iterations of GPU hardware may introduce features
that are exposed through updates to the CUDA language. The
availability of said features in a GPU processor are determined
by its major and minor number, which can be programmatically
accessed, allowing developers to produce hardware-dependent
code through the use of macros. An up to date list of features
are available in the CUDA programming guide [33].

2.3.1 GPUs as parallel coprocessors

The amenability of GPUs to speed up parallel workloads in
the scientific computing field has been shown on a variety of
data-intensive and throughput-driven applications.

DNA sequencing is a compute-intensive field where GPUs
have improved performance. Parallel sort and reduction tech-
niques are implemented with GPUs in the framework Arioc to
compute alignments of DNA sequences, where it achieves up to
10× higher throughput compared to other CPU aligners while
maintaining or improving the accuracy of the results [34], [35].
A benchmark comparing various DNA sequencing algorithm
including different GPU-based tools was performed by Pawar et
al. including comparison against CPU-based tools. The bench-
mark showed how GPU delivered better throughput, where the
authors mention how GPU-based tools should replace CPU ones
due to the better performance [36].

Radio telescopes have DAQ systems which filter in a similar
way as HEP experiments. Frameworks like Bifrost implement
their algorithms with C++, Python and CUDA to process data
in real-time, where the CUDA version delivers significant higher
throughput in the framework [37]. A real-time pipeline for the
CHIME Pathfinder radio telescope requires processing data at
rates close to 1 Tbit/s, where they use a GPU-based framework
for their data flow, benefiting from aggressive optimizations to
cope with the data rate [38].

In High Energy Physics, several workloads have been adapted
to many-core architectures. GPUs have been used for event
selection and reconstruction in various environments [39, 40].
I. Kisel designed an automata based track reconstruction that has
been widely adopted over recent years [41]. The CMS collabora-

2.3 graphics processing units 47

tion has successfully ported their vertex detector reconstruction
to GPUs [42], and the ALICE collaboration has transitioned to
GPU-based processing for a large part of their Online recon-
struction [43].

Using hardware accelerators to speed up computations of
the LHCb High Level Trigger has been attempted before. A
parallel implementation of the VELO subdetector tracking was
attempted for the first time on GPUs in the author’s master’s
thesis [44]. A more fine-tuned implementation of the GPU
Velo tracking was presented in the LHCb Computing Workshop
in November, 2015. The implementation, written in OpenCL,
offered early promising results of the amenability of GPUs to
process sections of the LHCb trigger.

Through analysis and profiling of the LHCb HLT codebase
it became increasingly evident that the underlying hardware
architectures executing the code could be more efficiently uti-
lized by applying various of the principles described in this
chapter. The HLT codebase is memory bound [45], and thus a
more efficient exploitation of memory access patterns, memory
structures and cache accesses (see section 2.2), alongside new
parallel methods, were explored. Other hardware architectures
such as GPUs were also considered as alternative solutions to
overcome the performance gap (see 1.3.1). A variety of problems
and hardware architectures are considered in this thesis, with
the intent of optimizing the workloads in the High Level Trigger
application of LHCb.

Part II

PA R A L L E L A L G O R I T H M S

3
D E C O D I N G A L G O R I T H M S

I
ncoming data from the LHCb detectors are encoded
in formats specific to each subdetector. Each subde-
tector raw data must be decoded prior to being usable
within the reconstruction sequence. The sequential

decoding routines defined in the Gaudi HLT applications leave
little space for innovation, given the format must be followed
within strict typecasting rules. Nevertheless, deterministic and
efficient parallel realizations of these routines are far from trivial.

Figure 3.1 depicts a detail of the HLT1 decoding sequences.
The contributions of this thesis are the four parallel decoding
designs and implementations. For the Velo reconstruction, a
parallel Velo clustering implementation has also been developed.
In the figure, each box represents a different GPU algorithm, part
of the containing dashed box subsequence. Blue boxes represent
algorithms for which both CPU and GPU implementations have
been developed.

The decoding sequences share a common pattern. The num-
ber of hits in each subdetector is necessary to allocate buffers
that can hold the decoded subdetector data. Therefore, the
number of hits is calculated as the first step of either decoding
sequence. In the Velo case, an upper limit is obtained by re-
quiring a distinct data pattern (cref. 3.1). The accumulated sum
or prefix sum over data of all events under process provide the
buffer size. The specifics of each subdetector decoding will be
discussed in the following sections.

3.1 velo decoding and clustering

Velo raw data ships all individual pixels that have fired in an
event. The top of Figure 3.2 depicts the Velo modules within
the beam line, and a front view of a pair of Velo modules. Each
module is composed of four sensors with three chips each. The
bottom of the Figure shows a detail of the three chips in any one

51

52 decoding algorithms

VELO esti-
mate input size

Prefix sum
VELO clusters

VELO mask
clustering

VELO decoding
and clustering

UT calculate
number of hits

Prefix sum
UT hits

UT pre decode

UT find per-
mutation

UT decode raw
banks in order

UT decoding

SciFi calculate
cluster count v4

Prefix sum
SciFi hits

SciFi pre
decode v4

SciFi raw bank
decoder v4

SciFi direct
decoder v4

SciFi decoding

Muon pre
decoding

Prefix sum muon
pre decoding

Muon sort station
region quarter

Muon add coords
crossing maps

Prefix sum muon
station ocurrence

Muon sort
by station

Muon decodingMuon decoding

Figure 3.1: Decoding sequences detail.

sensor. Each chip is composed of an array of 256× 256 pixels
that can individually fire when a particle leaves a signal.

The total number of pixels in the Velo subdetector is therefore
52 (modules) ×4 (sensors) ×3 (chips) ×256× 256 (pixels per
chip) ≈ 40M. If each pixel were to be encoded individually as
raw data, each event would require 5 MiB solely to accomodate
Velo raw data. This would be inadmissible given the average
LHCb event size of 150 kB.

Since the average occupation of the Velo subdetector is under
0.1%, the array of pixels in each chip is grouped in superpixels
(SPs) of 8 pixels, and only active superpixels are encoded, along-
side its location coordinates relative to the containing sensor.
Figure 3.3 shows the layout of a SP. The order of the pixels is
increasingly from the bottom in y, and increasingly from the
left in x.

Velo raw data is encoded in 208 raw banks. Each raw bank
corresponds to a distinct sensor. Each raw bank encodes an SP
header followed by SP words. The number of SP words in the
sensor is encoded in the 16 least significant bits (LSBs) of the
SP header. Figure 3.4 shows a detail of the formats of the SP
header and the SP words. There are up to 384 columns and
64 rows where the SP could be placed, and thus 9 and 6 bits

3.1 velo decoding and clustering 53

[mm]x
-30 -20 -10 0 10 20 30

[m
m

]
y

-30

-20

-10

0

10

20

30

(a)

chip 0 chip 1 chip 2chip 0

col 0 col 255
row 0

row 255

local x

lo
ca

ly

(b)

Figure 3.2: Top: Detail of pair of Velo modules. Bottom: Detail of Velo
chips within a sensor.

0
1
2
3

4
5
6
7

Figure 3.3: Superpixel of Velo subdetector.

are sufficient to respectively encode the column and row in the
SP word. The hint field refers to neighboring SPs. If its value
is 1, then it is guaranteed there are no neighboring active SPs to the
current one. If it is 0, then it is not guaranteed there are neighboring
active SPs to the current one. This sort of indetermined state when

54 decoding algorithms

the hint is 0 is due to the limitations of the parallel pipeline of
the FPGAs 1 producing the format [46].

(a)

(b)

Figure 3.4: Top: SP header. Bottom: SP word.

3.1.1 Velo clustering

When particles produce signals in the Velo subdetector, they
often fire several neighboring pixels. The reconstruction of the
Velo takes this phenomenon into account. Pixels in neighbor-
ing cells are considered connected following the 8-connectivity
definition, whereby a pixel is connected to either of the adja-
cent horizontal, vertical or diagonal pixels (in essence, a chess
king’s reach). The problem of Velo clustering is a variant of Con-
nected Component Analysis (CCA): given a set of SPs, the average
columns and rows of 8-connected pixel clusters are sought.

The Velo clustering produces as a result a set of pixel clusters
or hits. For each hit, its spatial coordinates are stored, alongside
a unique identifier known as the LHCb ID. Figure 3.5 shows the
composition of the Velo LHCb ID format.

det.
4b

sensor
10b

chip
2b

column
8b

row
8b

MSB LSB

Figure 3.5: Unique hit identifier known as LHCb ID. Format of Velo
detector.

A straightforward manner to implement the Velo clustering
sequentially is to process sensors one by one, keeping a repre-
sentation of the sensor 768× 256 pixel space in memory. First,

1 A Field-Programmable Gate Array (FPGA) is an integrated circuit that can be
programmed, usually employing a hardware description language. FPGAs
produce the raw data format that is then decoded in processors.

3.1 velo decoding and clustering 55

all pixels in the SPs of the sensor are loaded onto the sensor
pixel space. A stack (LIFO) can then be used to traverse the
pixels and find all connected pixels by inspecting sequentially
each of the 8 neighboring locations, following a breadth-first
search and flagging visited pixels to avoid revisiting pixels. The
method is described in detail in [46].

1 for (auto sensor : sensors) {

2 vector<int> pixel_indices;

3 array<768 * 256, bool> sensor_pixels;

4

5 // Initialize sensor_pixels to false.

6 // Initialize pixel_indices with pixels from

7 // SPs, and sensor_pixels of those indices to true.

8 [...]

9

10 vector<int> stack;

11 for (auto pixel_id : pixel_indices) {

12 if (sensor_pixels[pixel_id]) {

13 sensor_pixels[pixel_id] = false;

14 int x = 0, y = 0, n = 0;

15 stack.push_back(pixel_id);

16 while (!stack.empty()) {

17 const auto index = stack.back();

18 stack.pop_back();

19 x += column(index);

20 y += row(index);

21 n++;

22 for (auto neigh_pixel_id :

23 neighboring_pixels(pixel_id)) {

24 sensor_pixels[neigh_pixel_id] = false;

25 stack.push_back(neigh_pixel_id);

26 }

27 }

28 add_hit(sensor, x/n, y/n);

29 }

30 }

31 }

Listing 3.1: Sequential Velo clustering pseudo-code.

A pseudo-code of the sequential implementation is presented
in Listing 3.1. For every sensor, pixel_indices are populated
with the individual pixels from the superpixels. sensor_pixels

56 decoding algorithms

keeps a view of the entire sensor. It is initialized to true for the
individual pixels, and false otherwise. From line 11 onwards,
pixel indices are consumed one by one. If the condition of line
12 is met, then said pixel is still not processed. The CCA instance
consists in finding the average row and column in the cluster
formed from the current pixel. To this end, variables x, y and
n keep a sum of the column, row and number of pixels in the
cluster, respectively.

The method employs a stack to navigate the neighboring
pixels. Elements from the stack are traversed and popped in
lines 17 and 18. x, y and n are updated from line 19 through 21.
Neighbouring pixels are added to the stack in the for loop of
line 22. Finally, once the stack has been consumed, the resulting
hit is added to the set of reconstructed hits.

A visual walkthrough the algorithm is shown in Figure 3.6.
In (a), the working green pixel is inspected. In (b), the pixel is
marked as visited (black), neighboring active pixels are added
to the stack (blue), and the next pixel in the stack becomes the
working pixel (green). Pixels are subsequently added to the
stack and processed one by one, as shown in (c) and (d). Once
the cluster is processed and no active pixels remain in the stack,
the cluster is created.

(a) (b) (c) (d)

Figure 3.6: Four successive steps of the sequential clustering algo-
rithm.

The presented implementation is simple and readable. A
natural optimization can be achieved by processing SPs where
the hint is 1 separately – information local to those SPs is enough
to reconstruct the cluster of pixels. Given that an SP is composed

3.1 velo decoding and clustering 57

of eight pixels, 256 possible variations of the contents of the SP
exist. A lookup table suffices to decode single SPs in a constant
time of log(256).

However, limitations arise when this method is attempted in
parallel. The sensor_pixels array would need to be extended
to all the sensors, as it is required to process each sensor. A
complete 5 MiB map of the pixels in the detector would be
required per event, restricting the number of events processable
in parallel. In addition, the algorithm contains numerous Read-
After-Write (RAW) dependencies. sensor_pixels is updated
with every traversed pixel, and the stack state is locally needed
from a control flow standpoint. In order to overcome these
shortfalls an algorithm has been designed from scratch.

3.1.2 Velo estimate input size

First, the number of hits in the Velo subdetector must be cal-
culated in order to be able to allocate a buffer to hold hit data.
Obtaining an estimate of the number of hits instead of the exact
number of hits would also solve the allocation issue, as long as
it is guaranteed the number of hits is overestimated and never
underestimated.

Single SPs, that is, SPs where the hint is 1, can at most contain
two clusters. As Figure 3.7 shows, two configurations can lead
to two clusters in a single SP: (a) SP bits 1 and 5 inactive, at least
one of either bit 0 or 4 active, and at least one of either bit 2, 3, 6
or 7 active – (b) SP bits 2 and 6 inactive, at least one of either bit
3 or 7 active, and at least one of 0, 1, 4 or 5 active. The number
of clusters in a single SP can be determined with a constant-time
lookup operation.

(a) (b)

Figure 3.7: Superpixel configurations leading to two clusters.

Clusters that span several SPs pose a more complex problem.
A cluster is usually composed of no more than 4 pixels, but
there is no hard limit to the number of pixels in a cluster, other
than the sensor extension. Figure 3.8 shows a distribution of the

58 decoding algorithms

expected cluster sizes. The probability of a cluster consisting of
many pixels is very low, but no assumption as to the number of
pixels in a cluster can be established a priori.

Cluster size
20 40 60

E
n
tr

ie
s

210

310

410

510

610

710

LHCb simulation

Figure 3.8: Distribution of cluster sizes for 10 000 simulated minbias,
ν = 7.6 events.

In order to estimate the number of clusters in multi-SP cases,
the following observation is made:

Lemma 3.1.1. Any cluster presents at least one pixel whose neighbor-
ing pixels north, north-east, east and south-east are either inactive or
out of bounds.

Proof. It can be demonstrated by reductio ad absurdum. Let us
consider the set of east-most pixels in a cluster, and let us assume
no pixels in that set fulfill the condition. In order for a pixel not
to fulfill the condition, there must be pixels either to the north,
north-east, east or south-east of it. Since the set of east-most
pixels is being considered, it is only possible that a pixel be
on its north cell. However, since the cluster is finite, there is a
north-most pixel in the set, either with not active neighbors on
its north cell or at the limits of the matrix.

This condition is depicted in Figure 3.9a. Three clusters are
shown in Figure 3.9b. Only one pixel fulfills the condition for
the top left cluster and the middle cluster, whereas the cluster
on the right has four pixels that fulfill the condition. The bottom
right pixel fulfills the condition as some of the pixels are out of
bounds.

An estimation of the number of clusters in the event can
be made by searching for these patterns and assuming they
refer to a single cluster. As has already been shown, there

3.1 velo decoding and clustering 59

(a) (b)

Figure 3.9: (a) Condition at least one pixel in a cluster must meet.
(b) An example in an arbitrarily sized array of pixels con-
taining three clusters.

are cases where the number of clusters will be overestimated.
In practice, this overestimation was found to be in average
1.5%, not impacting severely the amount of memory required.
Furthermore, this method is guaranteed to always yield either
the exact number of clusters or overestimate it. The pixels found
with this method are referred to as cluster candidates, and will
be used in a posterior clustering stage (see 3.1.4).

This method can be parallelized by having each thread look
for the cluster pattern on a different SP. Given an SP, neighboring
SPs to the north, north-east, east, south-east and south must
be loaded in order to test the aforementioned cluster condition.
Figure 3.10 shows various patterns that can be encountered
when exploring an SP for the cluster condition. (a) depicts the
external pixels to the SP that are required to be able to test the
condition. The need for five neighboring SPs is justified with
examples (b) through (e). Is is possible to encounter several
clusters that fulfill the condition, as (f) shows.

Testing the condition can be done in parallel within an event,
for all sensors and all SPs. The amount of memory required to
hold the SP and the required neighboring pixels is 17 bits, held
in a 32-bit register. A known drawback to this technique is that
each thread must iterate all SPs in the sensor, until the required
pixels are populated. However, as threads in a block process the
same sensor, there is a high chance the SPs are in L1 cache due
to locality.

60 decoding algorithms

(a) (b) (c) (d) (e) (f)

Figure 3.10: (a) Superpixel with neighboring pixels (yellow) required
for testing the condition. (b) to (f): Pattern examples.

Each pixel fulfilling the condition is kept for posterior pro-
cessing as a seed for a cluster. The algorithm Velo estimate input
size performs this process and outputs a contiguous array of
estimated sizes per module and a list of potential clusters per
Velo module.

3.1.3 Prefix sum Velo clusters

The array of estimated sizes contains in contiguous locations
the estimated sizes of each module in one event, followed by
the sizes of each module of the next event. A prefix sum of this
array permits to transform the input array, obtaining the total
number of clusters in all events alongside an offset for every
particular module in every event.

The prefix sum algorithm has been implemented following the
Blelloch scan [47] algorithm, including the parallel optimizations
in [48]. The scan has been implemented in three steps, and a
visual aid is shown in Figure 3.11:

1. Block scan – The input array is subdivided in blocks of
2048 elements. A parallel exclusive scan is performed over
each of the blocks, using the reduce / downsweep operations
described in [48]. The sum of each block is stored in
order in an auxiliary array. Each block is processed by a
CUDA block with 1024 threads. The number of threads
and number of elements in each block are chosen so that
the workload is balanced across the executing threads.

2. Auxiliary scan – A parallel inclusive scan is performed
over the auxiliary array with a single CUDA block.

3. Add – The auxiliary arrays are added to the blocks scanned
in the Block scan. The last element of the auxiliary scan

3.1 velo decoding and clustering 61

is added to the input array, effectively increasing the size
of the array by one element.

+ + +

Initial Array of Arbitrary Values

Scan Block 0 Scan Block 1 Scan Block 2 Scan Block 3

Store Block Sum to Auxiliary Array

Scan Block Sums

Add Scanned Block
Sum i to All values of
Scanned Block i + 1

Final Array of Scanned Values

Figure 3.11: Parallel Blelloch scan.

The prefix sum can be further optimized by performing suc-
cessive scans if the auxiliary array consists of many elements.
Also, specialized libraries provide implementations of general
purpose algorithms such as the prefix sum, for example [49].
These may be implemented in the future as improvements to
the existing codebase.

A CPU implementation is also provided for all prefix sums.
The CPU implementation fetches data from the GPU memory,
performs the prefix sum, and ships the result back to the GPU.
The CPU implementation is sequential, and it can be enabled at
runtime with the toggle -cpu-offload.

Once the prefix sum over the module sizes is done, a buffer
with as much memory as needed by the datatypes produced
by the subsequent algorithms is allocated with the memory
manager.

3.1.4 Mask clustering

Finally, cluster candidates are visited in parallel and expanded
into clusters. Since memory requirements must be kept low,
only the vicinity of the SP containing the cluster candidate

62 decoding algorithms

is loaded, consisting in a map of three columns of four SPs
each: one column to the west, the column including the cluster
candidate, and one to the east. The SP containing the cluster
candidate is placed on the second row starting from the north.
Figure 3.12a depicts the SP containing the candidate and the
neighbors loaded. The entire map is composed of 96 pixels. For
the sake of explanation, let us assume a 96-bit datatype that can
hold the entire map in a single object.

In order to reconstruct the cluster, a novel masking method is
described. The method processes a cluster candidate, marked
in green in Figure 3.12a. A bit-mask is created around the
cluster candidate, including the cluster candidate pixel and
the 8-connected neighboring pixels, as shown in yellow in (b).
Then, the primitive logical and operation is applied between the
mask and the SP map. The green pixels in (c) constitute the
new pixels in the forming cluster. A mask is created in (d)
around the forming cluster, containing the pixels in the cluster.
The resulting cluster is taken for the next iteration. The whole
process finishes when there are no new pixels in the cluster after
applying the mask, as shown in (i). At this point, the entire
cluster has been constructed.

A pseudo-code of the Mask clustering algorithm is shown in
Listing 3.2. After initialization of the datatypes, the main loop of
the method is in lines 15 to 18. The cluster is updated with the
contents of next_cluster. The next cluster is then calculated
with the logical and between the pixel map and a 8-connectivity
mask of the cluster. The creation of this mask is done in constant
time – regardless of the contents of the cluster, a mask can be
created with 8 shift operations applying the logical or operation.

It is possible that the cluster contains pixels with precedence.
In order to avoid cluster clones, the following precedence rules
are followed: (a) if the cluster consists of pixels north in the
same column of the candidate, or north-east, east or south-east
of the candidate, the cluster is discarded; (b) else, it is kept. The
reasoning for (a) is presented in the following lemma:

Lemma 3.1.2. If a cluster is composed of a candidate and pixels
located strictly to its north, north-east, east or south-east, then it
contains another candidate located strictly to its north, north-east, east
or south-east.

Proof. Let us consider a candidate c in a cluster. Let S be the
set of pixels on the same cluster located strictly to the north,

3.1 velo decoding and clustering 63

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 3.12: Mask clustering iterations.

64 decoding algorithms

1 int96_t pixel_map;

2 int96_t cluster;

3 int96_t next_cluster;

4 int8_t candidate_pixel_in_sp;

5 int column, row;

6

7 // Initialize:

8 // pixel_map with SPs.

9 // cluster to zero.

10 // next_cluster just with candidate to one.

11 // candidate_pixel_in_sp with candidate number in SP.

12 // column and row to starting column and row of map.

13 [...]

14

15 while (next_cluster != cluster) {

16 cluster = next_cluster;

17 next_cluster = pixel_map and 8con_mask(cluster);

18 }

19

20 const int96_t pixels_with_precedence = pixel_map and

precedence_mask(cluster, candidate_pixel_in_sp);

21 if (pixels_with_precedence == 0) {

22 const auto n = popcount(cluster);

23 const auto x = column * n + x_sum(cluster);

24 const auto y = row * n + y_sum(cluster);

25 add_hit(sensor, x/n, y/n);

26 }

Listing 3.2: Mask Velo clustering pseudo-code.

north-east, east or south-east of c. If S is not empty, then it must
contain at least one 8-connected subset of pixels. Let T be one
of such 8-connected components. Then, T must contain at least
one candidate, as per Lemma 3.1.1.

The pseudo-code reflects this with the condition
pixels_with_precedence be zero. Finally, the number of pixels
in the cluster must be calculated. The popcount instruction was
introduced in the SSE popcount instruction extension set and
is commonly available in up-to-date hardware across architec-
tures. The instruction counts the number of active bits (1s) in a
number. The number of pixels composing the cluster is calcu-
lated applying the function to the entire cluster. In addition, the

3.1 velo decoding and clustering 65

weight of each row and column can be calculated by applying
popcount to specific parts of the cluster, achievable through
masking, or by iterating active pixels in the cluster with the
count leading zeros operation. The condition finishes with
the addition of the hit.

Mask clustering can be parallelized across sensors and SPs.
The implementation requires just a subset of the SP data that
can be locally stored in thread registers.

3.1.5 Physics efficiency

In spite of the precedence rules set for the Mask clustering al-
gorithm, it is possible that a single cluster composed of many
pixels be interpreted as several clusters, which can lead to ineffi-
ciencies in the Velo track reconstruction. There was no working
definition of clustering efficiency in the LHCb community, since
clustering algorithms have typically performed perfect cluster-
ing, that is, found all correct clusters. In order to evaluate the
algorithm, the following definitions are proposed:

• Reconstruction efficiency:

Number of correctly reconstructed clusters
Total number of reconstructible clusters

• Clone fraction:
Number of clone clusters

Number of reconstructed clusters
• Fake fraction:

Number of fake clusters
Number of reconstructed clusters

What constitutes a correctly reconstructed cluster is typically
defined as finding the exact row and column of the cluster. It
could be argued that this definition is strict: a cluster placed in
the close vicinity is likely to be assigned to the same track and
produce similar track parameters in the Velo tracking algorithm.
A cluster is considered to be correctly reconstructed if the row
and column are at maximum at a distance of two pixel units, as
shown in Figure 3.13.

Given these definitions, the algorithm shows a reconstruction
efficiency of 99.27%, a clone fraction of 0.004% and a fake frac-
tion of 0.734%. In spite of the Velo tracking validator requiring

66 decoding algorithms

Figure 3.13: Error tolerance on average center of Velo clusters.

a strict LHCb ID equivalence, in other words, requiring rows
and columns to be exactly correct, the impact of the clustering
inefficiencies is negligible. The Velo reconstruction algorithm
developed as part of this thesis presents a high reconstruction
efficiency (see chapters 5 and 9).

3.2 ut decoding

The UT detector consists in four planes with staves of sensors.
Figure 3.14 shows a detail of the UTaX plane. The UTaX plane
is composed of 16 vertical staves. Each box represents a sensor,
and the density of strips composing each sensor accomodates
the expected higher hit count in the region immediately closer
to the beam line hole, depicted in the center. Green boxes
represent sensors consisting of 512 strips, whereas yellow and
orange boxes represent sensors consisting of 1024 strips. The
orange sensors in the middle region span half the height of the
other sensors, further increasing its precision.

x

y

Figure 3.14: UTaX plane. Each box represents a silicon sensor.

Data generated with Monte Carlo samples for the upgrade
LHCb detector encode UT hits with a pre upgrade data for-
mat, as per the elaboration of this thesis. At present, it is also
unknown whether it will be necessary to perform a clustering al-
gorithm to UT data. Therefore, the current baseline architecture
decoding has been parallelized.

3.2 ut decoding 67

Irrespective of the input data format, the decoded hits are
sorted in two dimensions, following a KD-tree-like structure [50].
Hits are grouped in sensor groups by their x, and within a sensor
group, hits are sorted by y. This method allows efficient searches
in the posterior UT tracking algorithm. Figure 3.15 depicts a
search in the target data format in two stages. For a given Velo
track extrapolated to a UT layer location {x,y}, the closest hits
will be searched. The sensor group is identified by locating the
x coordinate in the data structure, in darker blue in (a). Next,
neighboring sensors are located by performing an additional
search in y (b).

(a) (b)

Figure 3.15: Binary search steps for a given location onto a UT layer.
(a) Search of sensor group. (b) Search of first and last hit
within each sensor group.

The UT decoding algorithms achieve this data format in five
stages, which are succinctly described in the following.

3.2.1 Overview of UT decoding

First, the number of hits in the subdetector is calculated by
traversing the UT headers in algorithm UT calculate number

of hits. The correspondance between sensors and sensor
groups is statically defined, and thus each sensor group hit
counter is incremented accordingly upon parsing the raw data
structures. The number of hits of each sensor group and every
event are then prefix summed, yielding a contiguous array of off-
sets (Prefix sum UT hits). A data buffer that can accomodate
all UT hits in the events is allocated.

68 decoding algorithms

UT hits can be decoded at this stage. However, the order in
which they should be inserted is still not known. In particular,
all hits that are fired in the same sensor yield the same y in-
formation. Figure 3.16a shows six fired hits in two consecutive
sensors in a sensor group. The y of each hit spans the entirety
of each sensor, and thus the decoded y (y begin and y end)
cannot be used to obtain a deterministic order within a sensor.
In order to overcome this limitation, hits are sorted in a sensor

group according to the hit y (
y begin+ y end

2
), and if it is the

same, to the hit x, as shown in Figure 3.16b.

x

y

(a) (b)

Figure 3.16: (a) Fired hits in two sensors in the same sensor group.
(b) Sort order within sensor group. Only 30 strips are
depicted for each sensor to aid with visualization, instead
of the 512 or 1024 strips that would compose a sensor.

This logic is efficiently implemented in three steps. UT pre

decode decodes the x and y of every hit, alongside the raw bank
index of the hit. UT find permutation sorts sensor groups by
the insertion sort method, producing a permutation. Finally, UT
decode raw banks in order utilizes the permutation to access
the relevant hit, and decodes UT hits in place. A coalesced data
access pattern is achieved by storing contiguous decoded hits
in neighboring CUDA threads. Decoded UT hits consist of six
32-bit quantities, each of them decoded into their own SOA.

3.3 scifi decoding 69

3.3 scifi decoding

SciFi raw data is already clustered and sorted by x prior to
being processed by the HLT1 sequence. The headers and banks
composing SciFi raw data are depicted in Figure 3.17. Raw
banks are encoded in 16-bit words. They start with a header
and are followed by clusters that can either refer to:

• Single clusters – Encoded by a single word.

• Fragmented clusters – Encodes consecutive fired clusters
with two consecutive words.

A bit in the word identifies single clusters from fragmented
clusters. SciFi raw data can be decoded in a precise or in a
lossy manner. The lossy decoding interprets all clusters as single
clusters. Various revisions of the SciFi format have appeared
in the last years. The lossy decoding v4 has been implemented.
Two more recent versions of the decoding format have been
produced since, and efforts in supporting them are currently
undergoing. The impact in efficiency of using a lossy decoding
as opposed to a precise one is expected to be around 1%.

Event ID 0 Global H Global Data 0

Global Data 0

Global Data 0 Padded Data

Event ID 0 Global H H1 C1 C2 C3 C4 C5 H2 C1 C2 C3

C4 C5 C6 C7 C8 C9 C10 C11 C12 H3 C1 C2 C3 C4 C5 H4

C1 C2 H5 C1 C2 C3 C4 C5 H6 C1 C2 C3 Padded Data

Figure 3.17: Format of SciFi raw data headers and banks.

The SciFi decoding first calculates the cluster count in the
algorithm SciFi calculate cluster count v4. As a side effect
of using lossy decoding, the number of words in every raw bank
gives an exact count of the number of clusters that will be
posteriorly decoded. The number of clusters is prefix summed
in Prefix sum SciFi hits, yielding offsets and sizes for every
SciFi mat [51]. A buffer for the clusters is prepared in GPU
memory.

Decoding SciFi hits can then be performed. However, if de-
coding of raw banks is performed in parallel with an increasing
atomic counter, the order of clusters would not be preserved,
resulting in an inefficient decoder.

70 decoding algorithms

The first two SciFi stations encode four mats on every raw
bank whereas the last SciFi station encodes five mats on every
raw bank. Data is sorted either monotonically increasingly
or monotonically decreasingly every four mats. This implies
that data is sorted between raw banks only in the first two
stations, and requires a more fine grain processing for the third
station, where the four mat in one raw bank equivalence does not
hold. The first two station hits are stored either monotonically
increasing or monotonically decreasing in x. The top 8 zones,
corresponding to the last station, do not follow this pattern.

The pattern of the first two stations is exploited in the parallel
implementation of the SciFi decoding. SciFi direct decoder

v4 decodes clusters in the first two stations. It determines the
location of each cluster by its current raw bank offset, obtained
from the prefix summed datatype produced in the previous
algorithm and the local index of the cluster word with respect
to the beginning of the raw bank.

The last station is decoded in two steps. SciFi pre decode

v4 stores 32-bit pointers to the location of the raw data and the
words for every cluster in order. SciFi raw bank decoder v4

iterates the pointers, gathers the data and stores it in a coalesced
manner, maximizing the efficiency of store operations.

The SciFi decoding produces SOAs for each datatype required
by subsequent algorithms. The x0, z0, channel and endPointY of
each cluster are decoded. These variables describe the position
and properties of each cluster. In order to reduce memory
bandwidth of these algorithms, the fraction, plane code, pseudo
size and mat of each cluster have been encapsulated into one
single 32-bit datatype named assembled datatype.

3.4 muon decoding

Similarly to other detectors, muon raw data is organized in
banks. Each bank contains four batches of data of a variable
size, encoding tiles in 16-bit words. Each tile’s logical position,
consisting of its station, region and quarter, is decoded. Tiles in
the same station, region and quarter are partitioned into two sets
depending on their layout, and the following logic is applied:

3.4 muon decoding 71

• If a tile represents a pad, a hit is added.

• For every two tiles representing strips that cross, a hit is
added. These tiles are flagged as used.

• Every tile representing a strip that was not flagged is
considered an uncrossed tile and encodes exactly one hit.

Therefore, the final number of hits cannot be calculated until
all crossings of all tile partitions have been processed. The muon
decoding is thus implemented as follows. The number of tiles
is decoded in the Muon pre decoding algorithm, together with
station, region and quarter placement, encoded as a single 32-bit
integer. The number of tiles is prefix summed in Prefix sum

muon pre decoding.

Then, all tiles are sorted in the Muon sort station region

quarter, employing a parallel insertion sort and utilizing shared
memory as temporary storage. Tiles are decoded following the
above logic in the algorithm Muon add coords crossing maps.
In order to avoid the high memory footprint of decoding tiles
only to reshuffle them later, a 64-bit long integer encoding hit-
identifying information is stored as muon compact ids.

The final hit count is calculated in Prefix sum muon station

ocurrence, and hits are sorted and compact ids are decoded in
place in Muon sort by station. Data is stored in the appropri-
ate SOAs in this last step.

4
T R A C K R E C O N S T R U C T I O N

T
rack reconstruction, or tracking, is a pattern recog-
nition problem consisting in finding particle trajecto-
ries from measurements in detectors alongside their
path. The problem is equivalent to finding a partition

of disjoint sets of measurements, accounting for the fact that
some measurements may be noise, and some particle trajectories
may not be of interest to the researcher.

The trajectory of particles may be deviated by a magnetic
field, as a function of the electric charge and the momentum
of each particle. The detecting material may also interact with
the particles in a process known as multiple scattering, affecting
the trajectory of the particles. Multiple scattering is usually
regarded ultimately as a physical limitation of the detecting
apparatus and is not accounted for, other than the expected
statistical inefficiency caused by it.

Various track reconstruction problems are shown in Figure 4.1.
Early examples of track reconstruction would be done in bubble
chambers [52], whereby a particle would create ionized tracks in
its pass through a superheated liquid, causing the liquid to vapor-
ize and generate bubbles. Bubbles would then be photographed
and rudimentary digitized, yielding images such as (a). Tracks
are visible to the naked eye with this early technology.

Two more recent examples are shown in (b) and (c). A cylin-
drical detector with measurements and tracks is shown, where
the presence of a magnetic field deviates particle trajectories into
helical trajectories. A YZ projection of a section of the Velo sub-
detector is shown in the bottom, where trajectories are straight
lines. In both of these examples, measurements are shown on
the left, whereas trajectories are shown on the right.

While the mathematical models describing particle trajectories
have not changed, track reconstruction has become increasingly
complex due to the increase in collision rates and the increase
in event hit multiplicities. In some cases like the ALICE time
projection chamber (TPC) or the silicon tracking system of CBM,

73

74 track reconstruction

(a)

x

y

(b)

z

y

(c)

Figure 4.1: (a) Bubble chamber event. (b) Tracking detector with cylin-
drical layers. (c) YZ projection of section of Velo.

the high rates produce overlapping events, adding a time dimen-
sion to the problem [53]. It is therefore crucial to explore the
different techniques and adapt them to parallel processors, in
order to keep up with the demanding requirements of modern
detectors.

4.1 efficiency indicators

Particles that pass through a detector are considered recon-
structible when they meet a criterium specific to the detector.

4.1 efficiency indicators 75

The criterium depends on factors particular to the technology of
the detector, such as its topology, the detecting medium, and the
kind of particles expected to be reconstructed. Within the LHCb
tracking system, a particle is reconstructible in a subdetector if:

• Velo – The particle generates at least three different hits
(clusters of pixels).

• UT – The particle produces at least one hit in an x layer,
and one hit in a u/v layer.

• SciFi – The particle generates at least six hits, with at least
one hit on each station x layers, and at least one hit on
each station u/v layers.

The validation of a track reconstruction algorithm is per-
formed against Monte Carlo simulated samples, where recon-
structed tracks should match Monte Carlo particles, which es-
tablish the ground truth. The matching of tracks with particles
is done on a hit by hit basis. In LHCb, this is accomplished by
comparing their LHCb IDs.

The physics quality of found tracks can be evaluated accord-
ing to five indicators [12]:

• The track reconstruction efficiency can be determined by the
ratio between the reconstructed tracks of reconstructible
particles, over all the reconstructible particles:

Nreconstructed and reconstructible

Nreconstructible
(4.1)

• A fake track (ghost track) is created when a percentage of
hits in a track are not from a real track. In LHCb, at least
70% of the hits in a track must be in a Monte Carlo particle
to be associated in the validation process. The fake track
fraction is the ratio between the fake tracks and all the
reconstructed tracks:

Nfake tracks

Nreconstructed tracks
(4.2)

• The clone track fraction refers to the fraction of tracks asso-
ciated to the same Monte Carlo particle as another recon-
structed track:

Nclone tracks

Nreconstructed tracks
(4.3)

76 track reconstruction

• The purity in a track refers to the fraction of track hits that
belong to the true particle:

Ntrack hits in true particle

Ntrack hits
(4.4)

• Finally, the hit efficiency yields the number of hits correctly
found out of the true particle hits in a track:

Ntrack hits in true particle

Ntrue particle hits
(4.5)

Validation numbers are typically listed in separate categories.
Table 4.1 shows a sample validation output from a run of the
GPU sequence over Monte Carlo data. Global fake particle rates
are presented at the top. For each category, the reconstruction
efficiency is shown, followed by the clone fraction, the purity
and the hit efficiency.

Fake fraction
TrackChecker output 7.61%
for p > 3 GeV, pT > 0.5 GeV 6.62%

Track type Reconstruction Clone Purity Hit
efficiency fraction efficiency

Long 45.49% (46.41%) 0.66% 96.81% 92.30%
Long, p > 5 GeV 62.74% (63.85%) 0.64% 96.98% 93.39%
Long strange 29.86% (30.19%) 0.80% 96.15% 91.21%
Long strange, p > 5 GeV 51.88% (52.77%) 0.70% 96.47% 92.91%
Long from B 67.66% (68.34%) 0.66% 97.32% 94.06%
Long from B, p > 5 GeV 78.29% (78.52%) 0.66% 97.39% 94.48%
Long electrons 12.59% (13.02%) 2.56% 95.52% 91.30%
Long electrons from B 28.37% (30.41%) 1.83% 95.86% 91.97%
Long electrons from B, 41.91% (44.59%) 1.65% 95.96% 92.66%
p > 5 GeV
Long from B, p > 3 GeV, 80.06% (79.05%) 0.66% 97.38% 94.32%
pT > 0.5 GeV

Table 4.1: Physics validation output.

The quantities shown strictly follow the definitions above. It
would also be possible instead to calculate a weight per event
and average it over the number of events processed. In particular,
the weighted reconstruction efficiency is:

1

n

n∑
i=0

Nfake tracksi
Nreconstructed tracksi

(4.6)

4.2 overview of track reconstruction methods 77

Densely populated events can outweigh low populated events
simply because the number of tracks in those is higher. Weight-
ing by event allows to mitigate this issue. Table 4.1 shows both
reconstruction efficiency and weighted reconstruction efficiency
(between parantheses).

4.2 overview of track reconstruction methods

Due to the interest in tracking by many physics experiments,
various track reconstruction techniques have been documented
in literature [54]. Local tracking methods find tracks iteratively,
whereas global methods adapt an equivalent formulation of the
problem, typically including all measurements, where solutions
map to tracks.

4.2.1 Local methods

The most common local tracking method consists in finding a
track seed and extending it to other detector planes in a process
known as track forwarding or track following. The track seed
is usually formed by a segment of two or three hits, and the
search starts in a region where the hit multiplicity is lower
and thus signal is cleaner, which usually corresponds with the
furthest region to the expected interaction point. Track seeds
are extrapolated (forwarded) to detector regions closer to the
interaction point by applying an extrapolation accounting for
the presence of a field if necessary. A model of the track can be
formed from the track hits, and this model can be employed to
select among a list of candidate hits the best fitting one. This
extrapolation process may account for missing hits in detector
parts, according to the hit inefficiencies of the physical detector
and dead regions without sensitive detectors. Once a track is
fully built, its constituent hits can be flagged so they are not
revisited in further seed or forwarding steps.

The LHCb baseline Velo reconstruction algorithm is based on
a track forwarding technique. The algorithm Search by pair [8]
constructs seeds of pairs of hits initially in the furthest mod-
ules from the interaction region. Track seeds are forwarded
to neighboring modules, allowing for one consecutive missing
module on any one side of the Velo subdetector. Tracks of four
or more hits flag all of their hits, reducing the search time of

78 track reconstruction

further seeding and forwarding steps, and avoiding the creation
of clone tracks. Tracks consisting of at least three hits are stored,
in accordance to the reconstructibility condition of the Velo
subdetector.

Track forwarding has commonly been used in conjunction
with the Kalman filter estimator [55, 56]. The Kalman filter
provides an iterative method to update the prediction of a track
model (see chapter 7). The χ2-statistic determines the best
measurement with regards to the prediction of the model.

Other local tracking methods are track roads and track elements.
The track roads method consists in forming candidates with
two hits situated in the extremes of the detector, and creating
a path or road between both hits by interpolation. In case the
model of the track be curved, a third hit should be added. The
width of the road determines the accepted error in the model,
and it depends on the characteristics of the detector [57]. The
track elements method has two phases: (1) seeds are made up
from neighboring points, straight lines or parabolic lines. Each
seed is converted into a master point (a weighted average of the
points) and a direction. (2) The seeds, instead of the original
hits, are used to perform tracking. This method reduces the
number of hits to consider in the tracking phase, at the cost of a
loss in precision [58].

Hit multiplicity is often a concern in real-time reconstruction
environments, where track reconstruction must be performed at
a high throughput in order to keep up with the collision rate.
Spatial reductions can be employed to reduce the search time
of hits under consideration for local tracking methods. This
envolves a data preparation step prior to the application of the
tracking method.

One simple spatial reduction is achieved by sorting hit ar-
rays by a particular coordinate. Hit arrays are sorted on a per
module basis prior to performing the Search by pair algorithm.
This ensures every iterative search of compatible hits can be
performed with a binary search, reducing the overall number
of memory accesses of the algorithm. The dimensionality of
hits under consideration can be reduced by employing R-tree
structures [59] or KD-tree structures [50]. The specifics of the ge-
ometry of the detector yield in some cases a natural subdivision
of the problem, as in the ALICE TPC sectors [60].

4.2 overview of track reconstruction methods 79

4.2.2 Global methods

Track reconstruction can be adapted to global formulations
of the problem. The histogramming method plots all possible
lines that pass by each point. A line that passes through all
points will be visible in the histogram produced. In a simplified
formulation, all possible lines containing a point of coordinates
x,y can be expressed with the polar coordinate representation
of a line:

ρ = x cos(θ) + y sin(θ) (4.7)

The histogramming method applied to 2D tracks and straight
lines is exemplified in Figure 4.2. Points on the left image are
mapped to lines in the ρ and θ space. A 2D histogram of the
right image would reveal where the lines cross, and what are
the parameters of the compatible tracks.

−10 −5 0 5 10

−
10

−
5

0
5

10

x

y ●

●

●

●

●

●

●

●

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
20

−
10

0
10

20

theta

rh
o

(b)

Figure 4.2: (a) Points in space across two lines. (b) Representation in ρ
and θ space of all possible lines traversing the points.

The histogramming method is a special case of the more
generic Hough transform method [61]. Despite of the elegance
of the Hough transform underlying principle, its application
is more nuanced. Difficulties arise when dealing with high hit
multiplicities, where binning and threshold of the histogram
play an important role in avoiding excess of clones or fake tracks.
Circular trajectories must be converted to lines prior to applying
the Hough transform, which can be achieved with a conformal
mapping transformation.

80 track reconstruction

The clustering method consists in extrapolating hits onto a
parameter space, according to the expected trajectory from a
collision vertex. Once in the parameter space, hits pertaining to
the same track appear close to each other. The tracking problem
consists then in a clustering problem, that can be solved with any
clustering method [62]. The collision vertex must be chosen with
sufficient precision, and the resulting cluster must be verified to
match reasonable track parameters [63].

Even in cases where the origin vertex is only estimated, the
problem transformation yields tracks that share patterns in the
parameter space. Figure 4.3 shows the extrapolation of all hits
from the origin in the Velo, with clusters found by (a) k-means
and (b) HDBSCAN [64]. Given that Velo tracks are straight lines,
the expected pattern out of the parameter space extrapolation is
either a cluster or a line of close points.

x

y

(a) (b)

Figure 4.3: Extrapolated points from Velo onto parameter space with
two solutions by clustering algorithms, obtaining the color-
coded tracks. (a) Solution provided by k-means. (b) Solu-
tion attained by HDBSCAN algorithm.

The automata method [41] is a graph traversal method of a
weighted directed graph representing the measurements1. Each
measurement is a vertex, and directed edges between measure-
ments in neighboring detector elements are created according
to the expected track parameters in the region of acceptance
of the detector, in the direction from outer to inner-most layer.
The graph is then traversed following a Depth-First Search, as-
signing weights to visited edges according to the current depth
level. If vertices are visited multiple times, the highest weight
prevails.

1 An equivalent formulation with automata is described in the paper [41].

4.2 overview of track reconstruction methods 81

In spite of its locality upon considering connected layers, the
automata method has been successfully implemented in various
detectors [43, 65]. In part, this is due to the separability of
the solution into sub-algorithms, and its amenability to being
efficiently implemented in parallel processors. Other graph
traversal techniques such as a variation of a Minimum Span-
ning Tree have been applied successfully to track reconstruction
problems [66].

Both the algorithm and the underlying hardware architecture
must be considered when devising an efficient track reconstruc-
tion solution. It has been discussed that global methods are
amenable by design for parallel architectures [54, 63]. In this
thesis however, the author has investigated a novel local track-
ing method and presents various algorithms in the following
chapters that demonstrate local methods may also be efficiently
implemented in parallel architectures.

5
V E L O T R A C K I N G

V
elo subdetector track reconstruction is one of the
critical problems in the LHCb reconstruction in spite
of the simplicity of particle trajectories therein. The
high collision rates of the LHC combined with the

increase in luminosity expected in the LHCb upgrade translates
into an expected rate of 109 particle trajectories per second.
In addition, the physics performance of the algorithm directly
impacts the performance of all subsequent stages in the track
reconstruction sequence.

The author has previously worked in the development of a
parallel local method for the Velo reconstruction that showed
promise [44]. Building on that foundation, the author has devel-
oped a fast local algorithm for track reconstruction on parallel
architectures. The algorithm has been designed for the Sin-
gle Instruction Multiple Thread (SIMT) programming model of
CUDA. In addition, the algorithm has been translated to the
SPMD programming model of ISPC [67], making it compatible
with CPUs.

The algorithm, named Search by triplet, has been presented
in the IPDPS conference, at the PDSEC workshop [1]. The
publication is included in appendix A. The current chapter
discusses the fundamental concepts, and extends on the results
presented in the publication.

5.1 discussion

The sequential Velo tracking algorithm, implemented in the
previous Run 2 of the experiment, has been briefly introduced in
section 4.2.1. A local tracking method is employed, whereby hit
pair seeds are created and forwarded to neighboring detector
modules. Upon completion of a track, if the track consists
of at least four hits, all hits composing the track are flagged
and not considered in posterior stages. This method avoids
traversing hits once they have been assigned to tracks, which is

83

84 velo tracking

advantegous since (1) clone and fake rates are lowered, and (2)
it reduces the multiplicity of hits to consider to fully reconstruct
the detector.

The sequential algorithm has been validated, and it delivers
the required physics performance of the LHCb physics pro-
gram. However, from a parallel design standpoint the algorithm
presents several shortcomings. Hits of Velo modules are sorted
prior to the execution of the algorithm. Then, Velo modules
are explored in order, finding compatible pairs and extending
them, checking compatible hits in the sorted order, within some
boundaries established by a tolerance condition. This process is
deterministic, however, it depends on the order in which hits are
considered. If a hit with a better fit χ2 than the found one exists,
it is not visited. Therefore, the processing order determines
the solution. In addition, hits in tracks are flagged, imposing
a visiting order to maintain determinism. These two condi-
tions are implicit read-after-write dependencies, and prevent
parallelization without blocking conditions.

Some parallel methods circumvent the stated dependencies.
The seeding phase of the CMS cellular automaton algorithm [65]
calculates all triplets in parallel, avoiding any flagging depen-
dency. However, this comes at the cost of processing all possible
hit triplets, making the method inefficient in densely populated
detectors.

Global tracking methods on the other hand are parallelizable
to some degree. Every bin can be populated in parallel in the
histogramming method, and several independent histograms
can be populated in parallel and later combined. The automata
method has been successfully implemented in several SIMD
parallel architectures [43, 68]. A variety of parallel clustering
methods exist in literature [69].

Search by triplet is a realization of a local tracking method. In
spite of the inherent data dependencies of local methods, the au-
thor has found sufficient parallel workload by processing triplets
of modules at each step on both sides of the detector simultane-
ously. The algorithm is optimized for SIMD architectures, and
runs efficiently both on multi and many-core architectures.

The physics quality of the algorithm is discussed in section 9.1.
The performance of the algorithm has been further optimized,
and additional architectures have been analyzed in section 10.2.2.

5.1 discussion 85

The GPU sequence framework presented in the publication [1] is
discussed in greater detail in part iii.

The Search by triplet algorithm is a key component of the
tracker system presented in this thesis. It historically stands out
as the first algorithm to demonstrate the feasibility of any LHCb
reconstruction algorithm on GPUs, leading to the posterior
development of a full High Level Trigger 1 realization on GPUs
(cref. chapter 8). It also demonstrates local tracking methods
are not inherently inefficient on parallel architectures, and sets
a design pattern that can be implemented for other tracking
problems (cref. chapter 6). Search by triplet is the current state-
of-the-art in LHCb Velo tracking in terms of performance.

6
F O RWA R D T R A C K I N G

A
fter tracks with Velo and UT hits have been recon-
structed, the forward tracking problem consists in
extending those tracks with data from the scintillat-
ing fibre tracker. As has already been introduced in

section 1.1.1, the SciFi subdetector is placed after the magnet
in the forward direction, and it constitutes the last stage of the
tracking system of LHCb. Particles are deviated by the magnet
in their path to the SciFi detector. Figure 6.1 shows the tracking
system with the trend of the magnetic field.

Upstream track

TT

VELO

T1 T2 T3

T track

VELO track

Long track

Downstream track

0

0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2
2 4 6 8 z (m)

B
y(

T)

Figure 6.1: Tracking system of LHCb with magnetic field strength
profile [70].

As particles cross through the SciFi detector, scintillating
fibres in their path fire and the signals generated are detected
by SiPM modules. SiPM modules can also produce thermal
noise, and thus the thresholds to form measurements takes this
effect into account. Figure 6.2 shows the values attained with
various cluster threshold configurations, as a function of the
SiPM position (shown as SiPM channel). The hit efficiency of

87

88 forward tracking

the detector determines the probability a measurement will be
produced given a particle leaves a signal, and it is a characteristic
of the detector. The designed efficiency of the SciFi detector is
98.66± 0.04% [51].

Channel
30 40 50 60 70 80 90

si
n

g
le

-h
it

∈

0.2

0.4

0.6

0.8

1.0

at the mirror

1.0 seed

1.5 seed

2.0 seed

2.5 seed

3.0 seed

3.5 seed

4.0 seed

4.5 seed
2.5 seed, 4.0 sum

Figure 6.2: Hit efficiencies for different cluster thresholds.

The SciFi detector consists in three stations, each equipped
with x,u, v, x layers. Energy deposits yield a precise x measure-
ment, whereas the y component utilizes the −5◦ and 5◦ tilt of
the u and v layers. Particles cross the detector spanning its
entirety, but the measurements that conform the input to the
algorithm lose the y information, with the exception of knowing
the upper or lower half was fired. In addition, the number
of SciFi measurements stemming from tracks that left signals

in both Velo and UT (long tracks) conforms roughly
2

3
of the

data [9].

All the factors above pose a real-time challenge in the LHCb
reconstruction. Several tracking algorithms have been produced
in the last few years in the LHCb codebase to solve this problem
in face of the upgrade. A histogramming method Seeding x
layers was developed in 2014 [71]. Significant improvements
were brought with Hybrid Seeding [9], which follows a modular
approach with several cases, providing a configurable variety of
physics and computing constraints.

A parallel track forwarding method has been developed. A
similar method to Search by triplet is employed by requiring
triplets from neighboring x layer candidates, and forwarding
tracks to other x layers and u, v layers. The code has been ho-

6.1 histogramming method 89

mogeneized avoiding branches and RAW control dependencies,
and completes the GPU tracking system.

6.1 histogramming method

The sequential LHCb reconstruction routine Seeding x layers,
structurally similar to Hybrid Seeding, consists of the following
stages:

• x-hit preselection – For every Velo-UT track, a candidate
window is created by requiring a minimum transverse mo-
mentum (pt). The momentum, charge and direction of the
track are taken into account when creating the candidate
window, resulting in a single side of the SciFi detector
being explored for each track, reducing combinatorics by
half. A list of candidate hits for each of the six x layers
is built by requiring for each hit a compatible hit in the
immediate U or V layer in its vicinity. This requirement
implies the effective hit efficiency of each x layer is the hit
efficiency of the x layer multiplied by the hit efficiency of
the neighboring u/v layer.

• x-hit cluster search – The momentum estimation from the
UT does not yield precise enough information to predict
within the candidate window the expected trajectory of
the particle. Therefore, all candidates are extrapolated
to a reference plane, where they are accumulated. Fig-
ure 6.3 depicts this process. Each of the hits in the window
are projected onto the reference plane, producing the his-
togram on the right of the image. A threshold is defined
in the histogram, producing track candidates.

The extrapolation to the reference plane is made taking
into account the effect of the magnetic field. The effect of
the magnetic field can be calculated by integrating the path
with the equations of motion through a magnetic field B
of a particle with a momentum p, charge q and velocity v,

d~p

dt
= q~v× ~B

A mathematical simplification is achieved by expressing
the trajectory of the particle as two linear paths with a
kick in the magnet center. The method is depicted in Fig-
ure 6.4, showing the kick at position zM. This method

90 forward tracking

reference plane #hits

x

track

window projections

Figure 6.3: 1D histogram formed by accumulating measurements ex-
trapolated in a reference plane.

permits calculating the trajectory of the particle through
a homogeneous magnetic field. However, given the fringe
field or peripheral conditions of the LHCb magnetic field,
assuming a homogeneous magnetic field would lead to im-
precissions of up to 20 cm in the particle trajectory. Instead,
an empirical formula obtained from fitting Monte Carlo
simulation data is used, involving the magnet center zM
and the track parameters tx and ty, in order to determine
the ∆slope (kick angle) of the particle,

zM = zMagPar1+ zMagPar2 ·∆slope2

+ zMagPar3 · t2x + zMagPar4 · t2y

Figure 6.4: Kick-method for estimating the trajectory of a particle bent
by a magnetic field.

• Fit of x projection – Hits from the 1D histogram are grouped
iteratively with a sliding window. The group must have at

6.1 histogramming method 91

least 5 hits and a maximum of 10 hits, and hits must not be
over a threshold distance in the reference plane. Groups
of contiguous hits that contain at least 4 hits on different
layers constitute track candidates. The 1D histogram can be
iterated several times depending on algorithm configura-
tion flags. Track candidates found in previous iterations
are flagged, to avoid being revisited in following iterations.

One hit in the candidate is chosen to obtain an updated
charge q and momentum p of the track. The track candi-
date is then fitted linearly, and the worse χ2 contributors
over a predefined threshold are removed in an iterative
outlier removal. Hits on missing layers in the candidate are
added and fitted. A cubic fit is finally done on the result-
ing track candidate, imposing thresholds on the resulting
χ2.

• Addition of u/v hits – Even though u/v hits were required
in the x-hit preselection stage, these hits were not further
used in the creation of the track. u/v hits are selected by
projecting them onto the x-axis and requiring them to be
within a tolerance window. Then, the hit minimizing the
distance to the expected x of the track fit xtrack is kept,
that is, minimizing dx = xhit − xtrack(zhit).

A fit of the stereo hits is also performed once the track
has been fully built. A check is performed by which the
extrapolated y from the Velo track to zM should match the
extrapolated y from the track hits. That is, |yVelo(zM) −

ytrack(zM)| should be under a threshold.

• Complete fit and ghost / clone killing – If all the above con-
ditions are met, a complete fit of the resulting track is
performed. The fit is done using the extrapolated coordi-
nate onto the reference plane, similarly to the x projection
fit. However, it includes all u/v hits x projections. After
fitting the track, an iterative outlier removal is performed
once more.

Even though the reconstructibility condition of the SciFi
detector requires only a total of 6 hits, Monte Carlo simula-
tions show that in most cases the number of hits in a track
is over 9 hits, as Figure 6.5 shows. Therefore, only tracks
with at least 10 hits are kept. No clones are encountered
by definition by only keeping one track per Velo-UT track.

92 forward tracking

#true FT hits
6 8 10 12 14

#t
ra

ck
s

Figure 6.5: Number of measurements in SciFi detector for particles
with p > 5MeV .

Finally, ghost rate is reduced by applying an Artificial
Neural Network discriminator. The discriminator is fed
with Monte Carlo training data, with features pertain-
ing to the qualities of the track, such as the difference in
the extrapolated location from the Velo to the track in x
|xVelo(zM) − xtrack(zM)|, and in y |yVelo(zM) − ytrack(zM)|,
the number of hits in different planes, and ∆

q

p
. The quality

of the discriminator is used finally to accept or reject the
track.

6.2 looking forward

The LHCb Forward tracking problem requires dealing with
numerous unknowns with respect to tracks momenta, hit inef-
ficiencies and noise. The sequential solution processes tracks
iteratively, with a code consisting in many branches that does
not bode well with data-parallel processors. The sequential
implementation was ported to CUDA by D. vom Bruch and
V. Gligorov, confirming the hypothesis a new approach was
necessary to run efficiently on parallel processors.

In order to efficiently use data-parallel processors, an algo-
rithm that processes a homogeneous workload was instead de-
veloped, where all threads would follow the same control path,
avoiding execution divergences in as much as possible. The
Looking Forward method consists in twelve steps, as is shown

6.2 looking forward 93

in Figure 6.6. Each box represents an algorithm. Red boxes
represent selection algorithms.

Search ini-
tial windows

Collect candidates

Triplet seeding

Triplet keep best

Extend tracks x

Quality filter x

Extend missing x

Search u/v
windows

Extend tracks u/v

Quality fil-
ter length

Fit

Quality filter

Figure 6.6: Forward tracking implementation Looking Forward.

In spite of the apparent increase in complexity, the presented
design is modular and every algorithm has confined and well-
defined tasks. The division of work into pieces allows opti-
mizing kernel call configurations independently and decreases
register usage.

The Looking Forward algorithm has been developed in close
collaboration with F. Pisani and D. vom Bruch. The contribu-
tions of this thesis are the original parallel design of the entire
algorithm into the steps presented here and the triplet seeding,
as well as many optimization iterations to the original design.

Search initial windows, Collect candidates

Windows in x layers are formed by extrapolating UT tracks,
taking into consideration the direction, momentum and charge
of the tracks. Candidates are required to have a matching hit
on the immediate neighboring stereo layer on the same station,
similarly to the sequential approach.

A hard limit on the number of candidates is set to be 32
per x layer. Candidates are sought from the middle outwards,
following a pendular order, giving preference to hits closer to
the extrapolated position in average. Each track may therefore
have up to 32 · 6 candidates.

94 forward tracking

The notation used in the following denotes by n the number
of events under execution, and by t the average number of tracks
in each event. The complexity of both Search initial windows
and Collect candidates is therefore O(n · t).

Triplet seeding

Neighbouring layers in x are checked three by three for the
existence of compatible triplets with a parabolic fit. Given there
are six x layers and denoting them by ascending order, this
implies searching for triplets in layers {0, 1, 2}, {1, 2, 3}, {2, 3, 4}
and {3, 4, 5}.

For any consecutive three layers, a parabolic fit χ2 is mini-
mized. In order to simplify the following arithmetic section,
any three consecutive layers are denoted by 0, 1 and 2, with
a hit on each with coordinates h0 = {x0, z0}, h1 = {x1, z1} and
h2 = {x2, z2} respectively. For every hit in layer 1, the hits in
the first and last layer minimizing the following function are
sought,

χ2 =
∑

dx2i

dxi = xi − (x0 + tx · dzi + param · qop · dz2i)
dzi = zi − z0

tx = (x1 − x0)/dz1

The param is obtained empirically through Monte Carlo sam-
ples, and qop refers to the

q

p
of the track. The above function

can be simplified taking into account parameter canceling,

dx0 = x0 − (x0 + tx · dz0 + param · qop · dz20)
= x0 − x0 − tx · (z0 − z0) − param · qop · (z0 − z0)
= 0

dx1 = x1 − (x0 + tx · dz1 + param · qop · dz21)
= x1 − (x0 + ((x1 − x0)/dz1) · dz1 + param · qop · dz21)
= x1 − x0 − x1 + x0 − param · qop · dz21
= −param · qop · dz21

6.2 looking forward 95

dx2 = x2 − (x0 + tx · dz2 + param · qop · dz22)
= x2 − x0 − ((x1 − x0)/dz1) · dz2 − param · qop · dz22
= x2 − x0 − x1 · dz2/dz1 + x0 · dz2/dz1 − param · qop · dz22

Yielding the following χ2 formulation,

χ2 = (−param · qop · dz21)2

+ (x2 − x0 − x1 · dz2/dz1 + x0 · dz2/dz1 − param · qop · dz22)2

Triplets are processed iterating over neighboring layers, three
by three. The qop term is UT track dependent. Therefore, the
following expressions can be precalculated for all triplets in
three neighboring layers for a UT track,

extrap21 = (−param · qop · dz21)2
dz2dz1 = dz2/dz1

extrap2 = param · qop · dz22

so the χ2 can be simplified as a function of x0, x1 and x2,

χ2 = extrap21 + (x2 − x0 − x1 · dz2dz1 + x0 · dz2dz1 − extrap2)2
(6.1)

All combinations of triplets from the candidates created in the
previous step are calculated. This amounts to a total of 4 · 323 =
131072 χ2s for every UT track. Two additional optimizations
have been done to cope with the high number of calculations,

• A tiled data access pattern is employed when calculating
triplets. All combinations between any hits in the first
and last layer in the triplet are precalculated, in batches of
16× 16 hits. Following equation 6.1, and for a pair of hits
{hi0,h

j
2},

partial_chi2 = xj2 − x
i
0 + x

i
0 · dz2dz1 − extrap2 (6.2)

χ2 = extrap21 + (partial_chi2 − x1 · dz2dz1)2 (6.3)

96 forward tracking

Partial chi2s are precalculated following equation 6.2. For
every hit hk1 , the partial chi2 is incorporated into equa-
tion 6.3 to obtain the final χ2.

This method preserves memory locality, as hits are likely
close in memory. Partial chi2s are stored in shared memory,
increasing throughput. Given that all triplets are calcu-
lated, the implementation follows a clear execution path
with few branches, efficiently processing many χ2s at a
time.

• Tensor cores [72] are specialized functional units in mod-
ern NVIDIA GPUs that allow performing fast mixed preci-
sion fused multiply-add (FMA) operations. Tensor cores can
be programmed with CUDA, and allow performing the
matrix operation D = A×B+C, for matrix sizes 16× 16,
8 × 32 or 32 × 81. Matrices A and B must contain half
precision floating point numbers2, and matrices C and D
can either (1) be single precision matrices, in which case
the operation A×B+C is performed and stored in single
precision, or (2) be half precision matrices, in which case
the operation is performed and stored in half precision.

The partial chi2 arithmetic has been expressed using Ten-
sor cores. Mixed precision mode is used (1). The precision
lost by requiring matrices A and B be expressed in half
precision are negligible and do not affect the results signif-
icantly. Hits are processed in a tiled manner, 16× 16 at a
time.

Tensor cores allow us to calculate χ2s up to 15% faster
on GPU models supporting them. A fallback standard
code has been developed for compatibility with older GPU
models, and to allow translations to other architectures
not featuring this specialized functional unit.

1 Tensor cores are programmable since CUDA version 9.0 on NVIDIA GPUs
of major version at least 7. The shown matrix sizes are allowed since CUDA
9.1.

2 16-bit (half precision) floating point, alongside 32-bit (single precision) and
64-bit (double precision), are numerical and arithmetical standards specified
by IEEE 754.

6.2 looking forward 97

A =



1 −xi0 xi0 0 . . . 0

1 −xi+10 xi+10 0

1 −xi+20 xi+20 0

1 −xi+30 xi+30 0
...

...
...

... . . .
1 −xi+150 xi+150 0 0



B =



x
j
2 x

j+1
2 . . . x

j+15
2

1 1 . . . 1

dz2dz1 dz2dz1 . . . dz2dz1
0 0 . . . 0
... . . .
0 0



C =

−extrap2 . . . −extrap2
... . . .

−extrap2 −extrap2


D = A×B+C

The best triplet with minimum χ2 for each middle hit is kept.
A maximum of 4 · 32 track seeds per UT track are formed. The
number of computations is constant, since all triplets are always
checked for every UT track. Hence, computational complexity
of the triplet formation is O(n · t).

Track formation in x layers

Triplets created in the previous step are sorted by χ2, and the
best are kept in algorithm Triplet keep best. The number of
triplets to preserve is configurable – the configuration is a trade
off between physics efficiency and performance. Insertion sort
is used, with a shared memory buffer as temporary storage. The
q

p
of the tracks is now updated, with the measurements from

the SciFi detector. The best triplets are projected onto missing
x layers in algorithm Extend tracks x, only considering the
collected hits in step two, Collect candidates.

98 forward tracking

Quality filter x filters tracks by requiring at least 4 hits. All
hits are projected onto a reference plane analogous to Figure 6.3,
and tracks are sorted in decreasing order by the spread on the
reference plane. The best two tracks per UT track are kept at
this stage. Finally, since only a few tracks remain after this cut
is applied, track hit efficiency is recovered by exploring all hits
in the missing x layers, in algorithm Extend missing x.

Each of these processes is parallelizable. Individual events are
assigned to different blocks of threads. Intra-event parallelism is
exploited in the sort algorithm of Triplet keep best, and best
tracks are chosen simultaneously immediately afterwards. Mul-
tiple tracks are projected and forwarded in parallel in Extend

tracks x, considering hits in layers in a data-parallel manner.
The projection and spread calculation in Quality filter x is
performed in parallel. Finally, multiple tracks are extended in
parallel, iterating over missing layers in a data-parallel fashion
in Extend missing x.

For each UT track, the best track according to a fitting con-
dition is kept in Triplet keep best. Extend tracks x may
extend tracks at most 5 iterations, over a constant number of
hits each time. Quality filter x selects tracks based on a con-
stant time calculation of the spread of the hits. The complexity
of these procedures is O(n · t). Extend missing x considers hits
in missing layers, for a maximum of 5 iterations, performing a
binary search to find compatible hits. The average number of
hits in a layer is denoted as m. Even though a binary search is
used to find the first and last candidate, in the worst case all
hits in the layer will be traversed, thus the complexity of Extend
missing x is O(n · t ·m).

Track forwarding to stereo layers

Tracks are forwarded to the u/v layers taking into account the
± 5◦ tilt of the layers. The Velo track is used to predict the
position in y, as is shown in Figure 6.7. A similar method
to the histogramming extrapolation is used, by combining the
prediction in x with the Velo extrapolation in y, y(track).

The search is done in two steps. Compatible hits are searched
through a binary search with a tolerance window in Search

u/v windows. Tracks are then extended to the best fitting candi-
date in Extend tracks u/v. Both the search and the extension

6.2 looking forward 99

x-
la

ye
r

x-
la

ye
r

u-
la

ye
r

v-
la

ye
r

F
ire

d
fb

er

Real track

xz track projection

x(z) measuredx(z) predicted

y(track)

(z=0,y=0)

Δ
y

(t
ru

e)

Figure 6.7: Track extrapolation to u/v layer. Image from [9].

of tracks iterate all six stereo layers, and consider all hits on
the track region. Even though it is possible that tracks of an
upper region produce measurements on to the lower region,
the current tracking method does not account for this effect.
This feature, commonly referred to as triangle search, will be
considered in future iterations of Looking Forward.

Both methods exploit intra-event parallelism by assigning
tracks to CUDA threads. For every track, six binary searches are
performed in the window search, and all windows are further
used to extend tracks. The separation in two algorithms favors
code branching homogeneity. The complexity of the search is
O(n · t · log(m)). The extension in the worst case is O(n · t ·m).

Track selection

Fully built tracks are selected by first requiring a minimum
number of hits in algorithm Quality filter length. In spite of
the evidence supported by Figure 6.5 suggesting a lower bound
of 10 hits, tracks with multiple hits on the same layer are not
allowed – this limitation is circumvented by requiring at least
9 hits. The remaining stages of the algorithm are similar to
the sequential incarnation. A full fit of the remaining tracks is
performed in Fit, and the set of parameters defining the tracks
is passed on to an ANN discriminator in Quality filter.

The track selection is parallelized assigning CUDA threads
to tracks. The complexity of the Quality filter length and
Fit are O(n · t). The topology and weights of the ANN in
Quality filter are static and its amortized time contribution
are constant. Therefore, the Quality filter is O(n · t).

7
K A L M A N F I LT E R

K
alman devised an algorithm [73] that is capable of
estimating the state of an object, integrating infor-
mation both from observations in the trajectory of
the object, and from a mathematical description of

the process driving the propagation of the object, known as the
Kalman filter. In its discrete form, the Kalman filter can be de-
scribed as a process consisting of two stages applied iteratively,
predict and update.

The LHCb use case and terminology are described in the
following. Particles that propagate through the detector at a
certain z position along the beam line are described with a
5-element state x̂,

x̂ = {x,y, tx, ty,
q

p
} (7.1)

where x, y are the position of the particle in the X and Y planes,
tx and ty correspond to the slope in X and Y in the parametric
formulation of the line at position z, q refers to the charge of
the particle, and p to its momentum. In addition, the error
associated with the state is defined by a 5× 5 symmetric matrix
P known as the covariance matrix, which stores the correlation
between all elements in the state.

Starting with a seed state, the Kalman filter alternates pre-
dicting and updating the state of the particle using detector
measurements. In the Kalman filter predict stage of location k,
the predicted state of a particle with state x̂k−1|k−1 and covari-
ance Pk−1|k−1 is calculated:

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk (7.2)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (7.3)

Fk is the transport matrix that transforms the previous state
and covariance into the predicted ones. External factors are

101

102 kalman filter

considered by including a control matrix Bk and a control vector
uk. External uncertainty is considered in the Qk term, also
known as the noise matrix, which refers to the noise caused by
multiple scattering in the detector material.

The Kalman filter update stage incorporates a measurement
into the prediction of the state of the particle,

zk = Hkxk + vk (7.4)

Kk = Pk|k−1H
T
k(HkPk|k−1H

T
k + Rk)

−1 (7.5)

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (7.6)

Pk|k = Pk|k−1 −KkHkPk|k−1 (7.7)

At location k, the measurement zk is observed (eq. 7.4), where
xk is the true state, and vk is the observation noise, assumed to
be Gaussian-distributed centered at zero with an uncertainty Rk.
Hk is the projection matrix, which projects measurements into the
space of the state. The Kalman gain Kk determines the relative
weight of the measurement with respect to the prediction.

The prediction and update may be applied as many times
as needed, and yield an updatable state of the particle. The
Kalman filter is used to estimate the goodness of a track and
to determine a good linear estimate of the track parameters in
regions of the detector. The Kalman filter may be performed
in the forward or backward direction. The process of averaging
states obtained from the forward and backward Kalman filter
is known as smoothing. It is possible to iteratively input the
smoothed state as the seed state of the Kalman filter, in order to
improve the quality of the estimation.

The Kalman filter is a process utilized at several stages of
the LHCb reconstruction. Since not all stages require the same
degree of precision, simplified Kalman filter models exist, which
trade off precision for speed. The author however was involved
with optimizing the full-fledged Kalman filter, with the objective
of improving hardware resource usage while delivering the
canonical formulation.

The Kalman filter has been parallelized in a number of works.
In [74], a parallel SIMD Kalman was developed optimized for
vector processors, used in the track finding and track fitting
procedures of the CBM experiment. In [75], track building
is sped up by employing a vectorized Kalman filter. In this

7.1 discussion 103

thesis a cross-architecture implementation of the Kalman filter is
considered for the track fitting procedure, optimizing resource
usage by employing a static scheduler.

The work carried out by the author has been presented iter-
atively in various conferences. In [76], the initial design and
a comparison between CPU architectures is shown. An Intel
Xeon CPU, Power8 CPU and Intel Xeon Phi architectures are
considered. The performance of both single and double preci-
sion was analyzed. In [77], a more fine-grained study over Intel
processors was carried out in collaboration with O. Awile and
O. Bouizi, including modern Intel Skylake processors. In [78], an
implementation for the LHCb Gaudi framework was developed,
validating the results and evaluating the performance speedup
obtained in the framework run conditions.

The publication [2], included as part of this thesis in ap-
pendix B, extensively reviews the method employed in the de-
veloped algorithm, and concisely presents the conclusions of the
work carried out by the author in the Kalman filter algorithm.
The rest of this chapter discusses the presented results.

7.1 discussion

Three independent Kalman filter implementations have been de-
veloped. Cross-Kalman mathtest1 is a cross-architecture program,
implemented in four different language technologies, including
two vectorization libraries (UMESIMD and VCL), and imple-
mentations written in CUDA and OpenCL. The three Kalman
filter implementations are compilable in a configurable floating
point precision of 32-bit or 64-bit. The program has been tested
in all the available technologies to the author, including x86,
Power8 and ARM processors, and NVIDIA and AMD GPUs.
The mathtest project implements solely the Kalman filter math,
and serves as a demonstrator of the efficiency of the mathemat-
ical formulation with respect to the data requirements across
architectures. As the roofline models show, the developed al-
gorithm makes optimal usage of the resources under the data
requirements imposed.

1 The three projects are publicly available. Cross-Kalman mathtest: https://
gitlab.cern.ch/dcampora/cross_kalman_mathtest. Cross-Kalman: https:
//gitlab.cern.ch/dcampora/cross_kalman. TrackVectorFitter: Available as
part of https://gitlab.cern.ch/lhcb/Rec.

https://gitlab.cern.ch/dcampora/cross_kalman_mathtest
https://gitlab.cern.ch/dcampora/cross_kalman_mathtest
https://gitlab.cern.ch/dcampora/cross_kalman
https://gitlab.cern.ch/dcampora/cross_kalman
https://gitlab.cern.ch/lhcb/Rec

104 kalman filter

In addition, the project serves as an indication of the expected
performance speedup attainable by the various architectures un-
der analysis, by producing an equally optimized code for multi
and many-core architectures. While it is a synthetic benchmark,
it is a significative result in the context of physics reconstruction.

Cross-Kalman is a multi-core cross-architecture implementa-
tion of the Kalman filter algorithm inspired by the LHCb Gaudi
TrackMasterFitter package requirements. This program serves
as a self-contained analysis reproducing the conditions of the
Kalman filter in the LHCb Gaudi framework. While preserving
the data dependencies in the Kalman filter formulation, multi-
ple particles are reconstructed in parallel, assigning predict and
update primitives to computing resources (elements in vector
units). A complex workload is considered by supporting the
forward and backward Kalman filter stages and the smoother,
with a control scheduler. Cross-Kalman results are validated by
supporting LHCb Monte Carlo data and analyzing the deviation
in the results obtained.

TrackVectorFitter is a Gaudi framework realization of the vec-
torized Kalman filter. It is a 1:1 replacement of the sequential
TrackMasterFitter, optimized for vector units. The vectorized fil-
ter has been validated against Monte Carlo samples to produce
equivalent results to the sequential filter.

The presented Kalman filter work is orthogonal to the devel-
opment of the GPU sequence in this thesis. The GPU High Level
Trigger 1 sequence includes a simplified Kalman filter instead.
During the prediction step, the nominal LHCb Kalman filter em-
ploys a magnetic field map and a Runge-Kutta extrapolator for
track propagation and a detailed detector description for deter-
mining noise from multiple scatterings. The simplified Kalman
filter, on the other hand, replaces these calculations with param-
eterizations. Due to the nature of the physics requirements, the
simplified Kalman filter results in a faster alternative for the
HLT1 use case.

The performance obtained by the vectorized Kalman filter
affects High Level Trigger 2 configurations of the LHCb Gaudi
sequence. The vectorized filter reduces the processing time of
the Kalman filter arithmetic to less than half, which results in
speedups of up to 1.09x in the entire sequence. The change
in data structures required by the vectorized filter, from AOS
to AOSOA, improves locality and data access patterns, and
serves as ground work for further improvements in components

7.1 discussion 105

related to the Kalman filter, such as track propagation. Under
the data requirements of the full mathematical formulation, the
developed Kalman filter arithmetic obtains the theoretical peak
performance of the processors analyzed.

Part III

F R A M E W O R K

8
A F R A M E W O R K F O R M A S S I V E LY PA R A L L E L
P H Y S I C S R E C O N S T R U C T I O N

F
ast algorithms on hardware accelerators have been
produced before for the LHCb physics use case
(cref. section 2.3.1). The implementation of the
OpenCL Velo tracking was up to 1.53× faster than

the reference implementation utilizing two Intel Haswell E5-2630
CPUs.

A key requirement to achieve a speedup over the reference im-
plementation was to run multiple events in parallel. Figure 8.1
shows the speedup obtained with the LHCb OpenCL Velo recon-
struction as a function of the number of events in flight. GPU
performance was significantly better when the number of events
in flight was in the thousands.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

60
00

Number of events

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sp
ee

du
p

(ti
m

es
)

Figure 8.1: Speedup of OpenCL Velo tracking as a function of the
number of events executed in parallel.

Since only the Velo tracking was developed in a first instance,
data dependencies enabling the execution of the algorithm
would be run using an LHCb Gaudi application. Prerequisites
would be processed on the host, then the computation would be

109

110 framework

offloaded to the accelerator, and the result would be integrated
back into the application upon completion of the offloaded work.
In the Velo tracking case, the host would decode the detector
data and prepare a binary blob to send to the accelerator, the
accelerator would process the job and return Velo tracks. Finally,
the host would populate Velo tracks in the required format. An
offload engine for Gaudi known as the Coprocessor manager [79]
was developed to this end, which enabled accelerators to interact
with any Gaudi application.

In spite of these promising results and the development of
the Coprocessor manager, fundamental design choices impeded
any further developments. The OpenCL implementation would
require to run thousands of events in parallel in order to have
an adequate workload for GPUs to be efficient. However, Gaudi
was designed to process individual events by each thread, one
at a time. This design decision favors data locality, since event
data of a single event has more chances to fit within cache
memory limits. Given that the Gaudi HLT applications are
memory bound, data locality severely impacts their performance.
Therefore, the design requirements of Gaudi and offloaded
GPU algorithms are irreconcilable, and other solutions must be
sought.

In order to overcome the limitations encountered in Gaudi
with respect to hardware accelerator utilization, a framework
for massively parallel physics reconstruction has been created.
Allen1 is an extensible and modular software framework to per-
form the LHCb High Level Trigger 1 on hardware accelerators
like GPUs. In its conception, it is meant to serve as a demonstra-
tor of the feasibility of such a trigger in view of the upcoming
LHCb Upgrade.

The framework is written in C++ with CUDA extensions. The
CUDA language has been chosen as it has received continuous
support from NVIDIA during the last ten years and provides
a compelling development set of tools. The minimum CUDA
capability required of Allen is the minimum supported by the
latest release of the nvcc compiler. Some of the developed algo-
rithms contain instructions that require higher compute capa-
bility. However, even in those cases an equivalent compatibility
version is provided to maintain support for older graphics cards.
This design decision ensures Allen is not locked to features only

1 Allen is publicly available at https://gitlab.cern.ch/

lhcb-parallelization/allen.

https://gitlab.cern.ch/lhcb-parallelization/allen
https://gitlab.cern.ch/lhcb-parallelization/allen

8.1 framework design 111

available in the CUDA language, allowing future translations to
other GPU programming languages or middleware languages
supporting a broad variety of accelerators [80].

8.1 framework design

Allen requires the presence of one CUDA-capable device in
order to run. The Allen framework is multithreaded, and it
utilizes the standard library std::thread functionality. Each
thread spawns a CUDA stream in order to offload computation
to the GPU. Each thread processes multiple events in parallel.
Since events are independent to one another, there is no need
for inter-thread or inter-stream communication.

Figure 8.2 presents an overview of the design of Allen. Each
box represents a class. Singletons are represented with a single
box, whereas classes with multiple instances are represented by
stacked boxes. Lines represent relations between the objects. A
description of the function of each item is presented. Certain re-
lations are transitive and require more exhaustive explanations,
which will be extended upon in dedicated subsections Control
flow and Data flow.

Input reader CheckerStreams

Scheduler

Handlers

Algorithms

Sequence MemoryManagerArgumentManager

ArgumentRefManager

Arguments

Constants HostBuffers SequenceVisitor

Visitors

Figure 8.2: Overview of design of Allen.

112 framework

• Input reader – Event raw data is supported through two
formats: A custom LHCb format MDF, and a custom Allen
binary format. Both can be produced with the Gaudi
framework from Monte Carlo simulated particle collisions.
The Monte Carlo truth2 of the subdetectors involved in
HLT1 are also read.

• Checker – A checker using Monte Carlo truth validates
the reconstruction sequence within the framework. The
functionality of the checker has been validated against the
checker in the Gaudi framework.

• Streams – A GPU is able to execute programs, receive data
and transmit data at the same time. The Allen applica-
tion spawns a configurable number of threads to run the
application, where each thread utilizes a CUDA stream
to communicate with the GPU and run algorithms, in an
non-blocking asynchronous manner. An effective pipeline
is created when Allen is executed with at least three CPU
thread - GPU stream pairs, so threads can send data from
host to device, receive data from device to host and execute
in the device concurrently (see section 10.2.1).

• Constants – Geometry constants, static lookup tables, mag-
netic field constants and others are populated only once
and distributed to each individual Stream. Constants are
kept both in CPU and GPU memory throughout the exe-
cution of the Allen application.

• HostBuffers – Data between executions of algorithms are
kept in GPU memory (cref. 8.3). However, the size of
certain memory buffers cannot be determined statically,
and depends on the execution of prior algorithms. The
singleton HostBuffers allocates a set of pinned buffers
on the host, to allow retrieval of any required memory
buffers from the GPU in an non-blocking asynchronous
manner. If the validation is enabled, HostBuffers also holds
pinned memory buffers for all produced objects that will
be validated, such as tracks, primary vertices or Kalman
filter states.

2 Events generated with Monte Carlo simulation contain both the signals from
the LHCb instruments detecting the event, and detailed information about
the particles produced in the event, including features such as their mass,
trajectory, velocity and momentum. The first constitutes the input for the
event reconstruction, whereas the latter is commonly known as the Monte
Carlo truth, employed for checking the efficiency of the reconstruction.

8.1 framework design 113

• Algorithms and Arguments – Developers can write nor-
mal CUDA or C++ functions, which are abstracted by
using Allen Algorithms and Arguments. Allen allows
the creation of both CPU and GPU algorithms. However,
Arguments refer only to GPU arguments.

• Handler – A Handler is defined by specifying a handler
identifier, an Algorithm and a set of Arguments. CPU
and GPU handlers can be created. Handlers abstract the
calling convention of CUDA by providing methods to
set the CUDA invocation parameters and the function
arguments. Similarly, CPU functions are encapsulated in
std::function. Handlers provide unique identifiers to
Algorithms in Allen.

• Sequence – A Sequence of Handlers is specified by the de-
veloper and is statically configured at compile time. Allen
provides an extensible list of Sequences. Once Allen is
compiled, the generated application is only able to execute
the Sequence it was configured with.

• MemoryManager – GPU memory is allocated once per
Stream (cref. 8.3). A MemoryManager manages the avail-
able global memory on each Stream by maintaining a
linked list of free memory segments, and providing
allocate and free implementations.

• ArgumentManager – The ArgumentManager stores an off-
set and size for each Argument required in the Sequence of
algorithms to execute. The size is determined at runtime
by any of the algorithm Visitors, and the offset is known
once the MemoryManager has allocated the required mem-
ory of the Argument.

• ArgumentRefManager – Each Handler refers to the Ar-
guments by employing an ArgumentRefManager of their
own. The ArgumentRefManager only has access to the
Arguments required by the Handler. This mechanism
prevents any Argument to be accessed after it has been
deallocated from memory by the MemoryManager.

• SequenceVisitor and Visitors – The Sequence is visited
by employing the Visitor pattern. The Visitor pattern is
defined by the Gang of Four [81] as:

“[The Visitor pattern] represents an operation to be per-
formed on elements of an object structure. Visitor lets you

114 framework

define a new operation without changing the classes of the
elements on which it operates.”

Developers can write two Visitors for each Handler: The
size of arguments can be explicitly set in
set_arguments_size. The execution of Algorithms, along-
side any memory tranmissions and data preparations are
expected to be run in visit.

• Scheduler – The Scheduler combines all the above func-
tionality to steer the Allen application. The Sequence of
Handlers is recursively inspected to generate a list of in
dependencies and out dependencies. In dependencies is the
list of Arguments required to be allocated prior to the
execution of every Handler. Out dependencies is the list
of Arguments that can be freed prior to the execution of
every Handler. For every Handler in the Sequence, the
Scheduler performs the following tasks:

– Employ the Handler Visitor set_arguments_size to
set the size of any Arguments that should be allocated
prior to the execution of the Algorithm.

– Use the Out dependencies to free Arguments employ-
ing the MemoryManager.

– Use the In dependencies to allocate Arguments em-
ploying the MemoryManager. The size of the Argu-
ments to be allocated should have their size in the
ArgumentManager populated. After allocation, each
Argument will have their offset in the Argument-
Manager populated.

– Finally, employ the Handler Visitor visit to invoke
the function and perform any required data manipu-
lations.

Since the Sequence and its data dependencies are speci-
fied using the Type machinery of C++, the Scheduler is
generated at compile time.

8.2 control flow

Allen requires developers to encapsulate logic into functions, in
the same manner they would write conventional C++ or CUDA
algorithms, and expose them to the framework by creating Allen

8.2 control flow 115

specific types Algorithms and Arguments. In addition, the
sequence of algorithms to be executed must also specified. The
necessity of specialized framework code is kept to a minimum
in order to avoid idiosyncratic practices that would prevent
developers from being efficient. The Velo sequence is presented
in Listing 8.1. Each line is a Handler identifier.

1 SEQUENCE_T(

2 init_event_list_t,

3 global_event_cut_t,

4 velo_estimate_input_size_t,

5 prefix_sum_velo_clusters_t,

6 velo_masked_clustering_t,

7 velo_calculate_phi_and_sort_t,

8 velo_fill_candidates_t,

9 velo_search_by_triplet_t,

10 velo_weak_tracks_adder_t,

11 copy_and_prefix_sum_single_block_velo_t,

12 copy_velo_track_hit_number_t,

13 prefix_sum_velo_track_hit_number_t,

14 consolidate_velo_tracks_t)

Listing 8.1: Velo sequence definition.

Allen executes the sequence of algorithms in the order set by
identifiers in the sequence, ensuring arguments lifetime require-
ments are met. Each thread runs the sequence in one CUDA
stream, and as a consequence algorithms do not overlap within
the stream.

Each algorithm in the sequence operates on multiple events
in parallel. The number of concurrent events processed is kept
constant throughout the sequence execution, and may decrease
when filtering algorithms are applied. Figure 8.3 presents a flow-
chart of the algorithms in the HLT1 sequence of Allen v0.6. Allen
implements an equivalent sequence to that of the HLT1 physics
program of the Run2 of the LHCb experiment [82]. The order of
the sequence of algorithms to be executed must fulfill the data
dependency chart of Figure 1.14. There are different orderings of
the algorithm sequence that would fulfill that criterium. The one
presented here reduces the memory footprint of the application
by performing clustering and tracking right after decoding of
each subdetector.

116 framework

Initialize

GEC

Velo decoding
and clustering

Velo tracking

Find pri-
mary vertices

IP cut

UT decoding

UT tracking

SciFi decoding

Forward tracking

Kalman filter

Muon decoding

Muon ID

Select events

Proceed to
HLT2 sequence

Figure 8.3: HLT1 control flow sequence overview.

Three decision algorithms are presented in the sequence. In
those, data reductions are performed according to different
criteria. The global event cut (GEC) only keeps events with
less than or equal to 9750 hits combining the UT and SciFi
subdetectors, which corresponds roughly to the busiest 10%
of the events processed. The algorithm labeled as IP cut is
disabled in the default sequence of Allen v0.6, depicted here as
an optional algorithm with dashes in its surrounding box. The
IP cut discards events with an Impact Parameter3 over a selection
threshold. The output of the sequence consists of a summary of
the decision behind the selection of events alongside the selected
events.

Simple and composite Handlers can be defined in the se-
quence. A composite Handler is defined with an identifier, a set
of Handlers and a set of Arguments. Code repetition is avoided
by encapsulating common tools such as the prefix sum or sorting
into composite Handlers, which would otherwise require ex-
plicit individual instantiation and lead to a slower compilation
due to the increased static analysis (see Figure 8.4).

Even though Allen is primarily a GPU framework, it is also
possible to define CPU algorithms. Since Allen requires CPU

3 The Impact Parameter of a produced particle refers to its distance in the XY
plane to the collision vertex it is associated with.

8.3 data flow 117

threads to launch the computations in parallel streams, these
CPU threads can potentially be used to run parts of the se-
quence. This allows developers to quickly develop and test CPU
prototypes. As a side effect, it also allows to speed up com-
putations by using CPU resources. In practice, CPU resources
are considered opportunistic resources in Allen, and overcommit-
ting to these impacts performance negatively. In the default
sequence, only the GEC and the Prefix sum are available in CPU
forms. These two algorithms are more naturally amenable to
sequential processing, and are enabled to run on the CPU by
default (--cpu-offload=1).

8.3 data flow

One of the central pieces of the design of Allen revolves around
the idea of efficiently using memory, which addresses three
issues found in GPUs:

• Memory available per core is very scarce.

• Thousands of events must be executed in parallel to obtain
good performance.

• Memory allocation / deallocation is a blocking operation.

The amount of memory available varies between GPUs. Mid-
end gaming graphics cards like the GeForce GTX 1060 exist in
3 GB and 6 GB GDDR5 memory models. High-end gaming cards
like the GeForce GTX 1080 Ti and the GeForce RTX 2080 Ti come
with 11 GB of GDDR5 memory. Scientific cards typically come
equipped with more and faster memory. The low profile Tesla T4
features 16 GB of GDDR6, whereas the Tesla V100 comes in two
versions, with 16 GB and 32 GB of High Bandwidth Memory
(HBM2) respectively.

Regardless of the configuration, these numbers are around one
order of magnitude behind the amounts of memory commonly
seen in up to date servers, between 64 and 256 GB. The difference
is bigger when considering the amount of memory available per
core. In all the configurations tested throughout the elaboration
of this thesis, servers were provided with O(1) GB per core,
whereas the GPUs mentioned above have O(1) MB per CUDA
core.

To give an estimate of the amount of memory required to
process a single event, the Gaudi HLT applications use a fixed

118 framework

memory consumption of 517 MB, with an additional average
6.74 MB per thread [45] in a configuration where threads process
events sequentially and individually. If the same approach
would be taken on GPU, assigning the same amount of memory
per CUDA thread, it would not be possible to run even one
thousand events in parallel in some of the GPU configurations.
The requirement of executing thousands of events in parallel
competes with the necessity for a lower memory footprint in
Allen.

In addition, memory allocation and deallocation is a blocking
operation on GPUs. In other words, the entire device must
be synchronized, stopping the operation on all streams and
all transfers from and to GPU memory. Finally, even if a cus-
tom memory manager is provided, dynamic memory allocation
within a stream would still require synchronization within all
blocks and threads in the stream.

Allen provides a custom memory manager, implemented
with the MemoryManager singleton. A fixed amount of data can
be allocated upon startup with the --memory parameter. The
configured memory amount will be allocated for each thread /
stream pair, and defines the upper bound of memory that can
be used at any point in the algorithm sequence. The memory
manager can allocate and free memory independently on each
thread within the bounds defined by --memory, set by default
to 1 GB. Since the amount of memory is fixed, if the scheduler
requirement surpasses the available memory, the application
runs out of memory and cannot continue processing the events.
Various contingency options are being studied to address out
of memory situations, such as restarting the affected events
execution in chunks of fewer events.

Dynamic memory allocations are not allowed within algo-
rithm executions in Allen. As a consequence, the expected
size of all buffers must be determined prior to the execution
of algorithms. While most buffer sizes can be calculated, this
introduces complications for certain buffers whose size is simply
unknown prior to the execution of the algorithm. For subde-
tector decoding, a fast decoding is performed to calculate the
size or estimate an upper bound of the memory required. For
tracking, since repeatedly running tracking algorithms would be
too slow, an upper bound is estimated using some subdetector-
specific knowledge. This will be explored with more care in the
algorithm sections 4.

8.3 data flow 119

Going through the tedium of defining static sizes for each
and every one of the algorithms in the sequence pays off in
terms of performance. Gaudi HLT applications currently spend
around 14% of runtime in allocating / freeing resources [45].
The time spent in Allen is negligible, as will be discussed in
subsection 8.4.

Last, Allen is required to execute thousands of events within
a tight memory budget. This limitation was well known at the
beginning of the design of Allen, and a common strategy was
followed within the creation of every algorithm. Following the
design philosophy of CUDA blocks and threads, the work was
divided in two dimensions. Inter-event parallelism is exploited
by independent blocks, whereas intra-event parallelism has been
sought following a multitude of ad-hoc techniques to exploit the
inherent parallelism of independent processes (cref. chapter 4).

Every algorithm was created from scratch for GPGPUs. Se-
quential techniques that would require memory buffers like
the Velo clustering (cref. 3.1) were scrapped and new methods
were developed. After the reconstruction of every subdetector,
a consolidation step is performed to store only required infor-
mation pertaining to tracks, primary vertices and states. The
memory manager frees memory accordingly and merges neigh-
boring free memory segments, that are reused in subsequent
algorithms.

Data transmissions between CPU memory and GPU memory
are kept to a minimum. Raw event data is transmitted in the
Initialize stage of Figure 8.3, and selections are retrieved at
the end of the sequence. Data buffers that are required by
subsequent algorithms are kept in GPU memory. Sporadic data
transmissions occur to populate buffer sizes, and to enable the
CPU opportunistic resource usage if enabled.

The challenging memory requirements of GPGPUs have been
taken into account in all Allen algorithms, to the point differ-
ences in memory size between GPU models are not a decisive
factor in the performance of Allen. Code reviews are carried out
upon completion of algorithms to ensure memory utilization is
kept to a minimum.

120 framework

8.4 framework performance

Framework compilation times depend on the length of the se-
quence defined. A static analysis is performed on the specified
sequence, meaning a longer sequence will lead to a more costly
compilation. Figure 8.4 depicts compilation times for differ-
ent sequence lengths. For each datapoint, the Allen sequence
was compiled with the DefaultSequence4 cut to a varying num-
ber of algorithms, up to the current size of the sequence. The
command cmake .. && make -j was issued: it converts the
cross-platform cmake representation into makefiles, and pro-
ceeds to compile them using all available cores in the server.
The server is equipped with two Intel Xeon CPU E5-2650 v3, the
compilation was done using cmake version 3.12.1, nvcc v10.1

and gcc 8.2.0, and the entire compilation process was done in
an SSD. The compilation times take between 1 and 3 minutes in
this setup.

0 10 20 30 40 50
Sequence length

60

120

180

Co
m

pi
la

tio
n

tim
e

(s
)

Figure 8.4: Compilation times of Allen for different sequence sizes.

A fit reveals the quadratic behavior of the compilation times.
The current sequence includes only two Composite Handlers.
Other single Handlers could be combined into Composite Han-
dlers if the compilation time becomes unmanageable. The num-
ber of lines of code in Allen also affects the compilation time.
Table 8.1 shows the composition of the current Allen codebase.
A total of 47 thousand lines of code with 57% written in CUDA
compose a fully functional HLT1 Allen codebase. It is noted

4 The DefaultSequence contains a full LHCb HLT1 sequence.

8.4 framework performance 121

that this number does not include the binary dumpers written
in Gaudi to produce Allen input, nor the generation process of
magnetic field input and other external tools used indirectly in
Allen.

Language Files Lines of code Percentage of total (%)
CUDA 405 27402 57.2
C++ 66 11178 23.4
C/C++ Header 91 4807 10.0
Python 26 2419 5.1
CMake 37 1260 2.6
Total 612 47868 100

Table 8.1: Lines of code of Allen.

Several snapshots of the GPU memory consumption of Allen
are shown in Figure 8.5, as reported by the memory man-
ager. The sequence was run with 1000 minimum bias events.
The memory consumption prior to the execution of respec-
tively the Velo tracking algorithm identified by Handler tag
velo_search_by_triplet_t, the forward tracking
lf_composite_track_seeding_t and the parameterized Kalman
filter kalman_velo_only_t are shown. Gray color identifies un-
used memory segments, whereas colored bands indicate mem-
ory segments actively occupied. All occupied segments have a
description tag, but only those that are big enough are shown,
to avoid clutter. The maximum size of the buffer is 500 MiB,
indicating the sequence was run with that buffer size limitation.
A dashed line is shown in each bar, indicating the maximum
space required by the sequence so far. Note the Kalman fil-
ter algorithm is executed after the forward tracking, so even if
memory segments dev_scifi_hits and dev_scifi_lf_tracks

are liberated, the maximum amount of memory required so
far is maintained in the memory manager, for debugging and
information purposes.

As the sequence execution progresses, unused and active
memory segments are interleaved. When new buffers are re-
quested to be allocated, the memory manager attempts to locate
an interleaved unused segment. If no interleaved buffers of
enough size are located, the heap size indicated by the dashed
line increases. In order to use memory more efficiently, memory
defragmentation could be applied to join interleaved unused
memory locations at the cost of moving memory buffers.

122 framework

0
100

200
300

400
500

M
em

ory segm
ents (M

iB)

velo_search_by_triplet_t

lf_com
posite_track_seeding_t

kalm
an_velo_only_t

dev_scifi_raw_in...

dev_velo_cluster...

dev_tracklets

dev_tracks

dev_scifi_lf_can...

dev_ut_track_hit...

dev_scifi_lf_tri...

dev_velo_track_h...

dev_ut_track_hit...

dev_scifi_lf_tri...

dev_velo_track_h...

dev_scifi_hits

dev_scifi_lf_tra...

Figure 8.5: GPU memory utilization after several algorithms of the
Allen sequence.

Memory transmissions from CPU memory to GPU memory
and viceversa are depicted in Figure 8.6. Four run configurations
are shown: (No) CPU offload refers to the --cpu-offload toggle
for using opportunistic CPU resources, whereas validation refers
to the --validate toggle, used for checking the produced data
against Monte Carlo truth at the end of the sequence run. Two

8.4 framework performance 123

types of transmissions are depicted, host to device and device
to host, where host refers to the CPU, and device to the GPU.
For each setting, the transmission time is compared with the
sequence execution time. The throughput of each configuration
is also shown. The overhead of the output report that should be
generated in a production environment has not been included,
since the output format is still not decided at the time of writing
(see Figure 8.3). The output report is estimated to moderately
increase the device to host transmission.

CPU offload No CPU offload CPU offload,
validation

No CPU offload,
validation

0

2

4

6

8

10

Fr
ac

tio
n

of
 A

lle
n

ru
nt

im
e

(%
)

device to host
host to device
throughput

0

10000

20000

30000

40000

50000

Th
ro

ug
hp

ut
 o

f s
eq

ue
nc

e
(e

ve
nt

s/
s)

Figure 8.6: Left Y axis: Relative data transmission times with respect to
sequence runtime. Right Y axis: Throughput of application.

The configuration that requires the fewest memory transmis-
sions is No CPU offload, which populates raw buffers and all
further computation occurs in the GPU, with sporadic buffer
size transmissions back to main memory. CPU offload processes
part of the sequence on CPU, which requires additional memory
transmissions both ways in order to offload the computation.
Validation sequences require transmitting to the host all data
involved in the verification of the results. All data transmissions
analyzed execute in under 12% of the sequence run time.

Allen runs the various worker threads asynchronously, which
allows an effective pipeline of data transmissions and recon-
struction execution. In spite of this, the differences in memory
transmissions do impact the reported throughput of the appli-

124 framework

cation. The sequences tagged as validation were found to be 3%
slower than their no validation counterparts, due to the device
to host transmission required.

All processes in Allen that are not the execution of the re-
construction algorithms constitute the framework backend. The
Allen framework backend resource consumption is of interest
since it could negatively impact performance, and require more
resources out of the hosting server, which would be included in
a full system optimization (see section 10.3).

The resource consumption of the Allen framework backend
was found to be negligible. An overview of CPU and memory
usage during the execution of Allen is shown in Figure 8.7. CPU
stabilizes at the equivalent of a single core 13% and 20% for the
No CPU offload and CPU offload configurations respectively.

0 20 40 60 80 100 120 140 160
Time (s)

0

20

40

60

80

100

CP
U

ut
iliz

at
io

n
(s

in
gl

e
co

re
 %

)

CPU offload
No CPU offload

Figure 8.7: CPU resource utilization during Allen run.

A CPU heatmap of the processes that consume most resources
in Allen is shown in Figure 8.8. The heatmap was generated
using the tool valgrind, with the option --tool=callgrind, and
the visualization was provided by kcachegrind. The CPU offload
configuration was run, with 8 worker threads, 1000 events and
100 repetitions. The No CPU offload configuration did not yield
any meaningful results and is not shown here.

The main process labeled as <cycle 2> has five children. The
two processes on the top are unidentified. The CPU version of
the global event cut takes 14.37% of the Allen CPU resources,
whereas the various invocations of prefix sum accont to 72.64%.
1.03% of the time is spent waiting on CUDA events.

8.4 framework performance 125

Figure 8.8: CPU heatmap of most resource consuming processes in
Allen.

Finally, the memory consumption of Allen is shown in Fig-
ure 8.9. The valgrind application was run with the option
--tool=massif, and the visualization is provided by
massif-visualizer. The CPU offload configuration was used
with the same settings as for callgrind.

Figure 8.9: CPU memory consumption, as measured by
valgrind --tool=massif.

126 framework

The memory consumption spikes at the beginning of the
sequence due to the readout of binary files and the initialization
of streams data. Once all files are loaded and all streams are
initialized, the memory consumption of the Allen application
stabilizes at around 23 MB for the entirety of the run. The
heap consumption during the sequence is composed mostly of
CUDA-pinned host buffer memory locations. Such buffers are
required for asynchronous data transmissions.

8.5 continuous integration

A set of scripts and a pipeline have been developed in collab-
oration with R. Schwemmer and P. Fernández Declara for use
within the Gitlab repository that hosts Allen. This continuous
integration work allows to:

• Check compilation works across various sequences, com-
pilers and platforms.

• Apply a clang-format to all merged code to master, by
invoking a common Gaudi script to that end.

• Run specific Allen sequences nightly, and publish perfor-
mance results online.

Figure 8.10: Continuous integration pipeline.

8.5 continuous integration 127

The pipeline developed is shown in Figure 8.10. The Build
stage compiles a single binary per sequence, with all required
GPU architectures as targets. The binary files are distributed,
executed and profiled in the Run stage across different GPUs.
Finally, the Publish stage publishes results online regarding
speedup and throughput across GPUs, and a dissect of the
times of the algorithms in the Allen reconstruction.

Results are published both to a mattermost channel in text
form, and to a Grafana server that keeps track of the evolution
in performance of the application. The continuous integration
developed make collaboration and discussion easier among the
growing number of collaborators of Allen.

9
T R A C K I N G S E Q U E N C E P H Y S I C S E F F I C I E N C Y

T
he physics efficiency of the developed tracking se-
quence has been analyzed in detail. A built-in val-
idator in Allen has been developed and validated
against the LHCb baseline software to this end. The

validator and the producer of the efficiency graphs presented in
this chapter have been developed in collaboration with
D. vom Bruch and M. Schiller.

The validation has been run over 1000 events of the BsPhiPhi
dataset. The physics efficiency of each individual subdetector
is studied in the following sections. For completeness, the
efficiency of the UT reconstruction [83] is included, even though
its tracking algorithm has not been discussed nor contributed
with this thesis.

9.1 velo reconstruction efficiency

The Velo reconstruction has three objectives: find tracks in
the Velo, use those tracks to find primary vertices (PVs), and
measure the distance of closest approach of each track to each PV
(impact parameter or IP) in order to distinguish tracks produced in
PVs from tracks produced in the decays of long-lived particles.

The Velo track finding is optimized to find both tracks trav-
eling forward from the interaction region towards the magnet,
and tracks traveling backwards from the interaction region out
of the detector. While only forward tracks are relevant for the
follow-up to the other tracking detectors, both forward and back-
ward Velo tracks are needed to have an unbiased and efficient
PV finding.

The Velo tracking efficiency obtained with Search by triplet
is shown as a function of track momentum, φ, and η in Fig-
ure 9.1, where the ghost rate is also shown as a function of the
number of primary vertices in the event. The same figures of
merit are shown restricted to tracks coming from beauty and
charm hadron decays in Figure 9.3. Beauty and charm hadron

129

130 tracking sequence physics efficiency

decays are shown as they are of particular interest towards the
LHCb physics program. Efficiencies for electrons coming from
beauty hadron decays, which are interesting for analyses, are
also shown. Finally, Figure 9.2 shows the momentum distribu-
tion of tracks. Most tracks accumulate at low momenta.

9.2 ut reconstruction efficiency

Following the Velo reconstruction, it is necessary to extrapolate
the Velo tracks through the magnetic field in order to measure
their momenta. The algorithm CompassUT creates search win-
dows around the track extrapolated positions in the UT layers
and finds compatible hits with the tracks. An efficient search
is performed with the sorted decoded datatypes described in
section 3.2. The extrapolation accounts for residual effects of
the magnetic field, which allows for a 15-25% momentum mea-
surement of the track. The momentum estimate will be used in
the posterior Forward tracking algorithm, to obtain a narrower
search window. In addition, the UT information reduces the
fake rate of the LHCb tracking system. Due to the geometry
of LHCb, most fake tracks are caused by mismatching genuine
Velo and SciFi track segments which however come from differ-
ent particles. The requirement of a matching UT hit along the
extrapolated trajectory reduces the number of these ghosts.

To help comparing track efficiencies with the Velo, analogous
efficiency figures are shown for Velo-UT tracks. The Velo-UT
tracking efficiency is shown as a function of track momentum,
φ, and η in Figure 9.4, with the ghost rate as a function of
the number of primary vertices. Beauty and charm hadron
decays efficiencies are shown in Figure 9.6, including efficien-
cies for electrons. CompassUT can be tuned to obtain better
efficiencies, trading off algorithm speed. The chosen default
configuration maximizes reconstruction efficiency within 1% of
the best achievable efficiency tested [83].

Electron efficiencies are significantly worse than non-electron
efficiencies. This is expected, as electrons are typically more
difficult to detect: they may emit photons in an effect known
as the Bremsstrahlung, losing energy in the process, making a
precise parametrization difficult; and the Bremsstrahlung may
also change the electron’s trajectory.

9.3 forward tracking efficiency 131

The momentum distribution is shown in Figure 9.5. The
turn-on curve refers to the gradual increase in efficiency (the
steeper the better) as a function of momentum observed in
the low momentum region. The LHCb physics program puts
more emphasis on heavier particle decays, such as beauty and
charm hadron decays, which produce typically high-momentum
particles which are easier to reconstruct as they bend less and
interact less with detector material. The observed turn-on curve
and overall efficiencies are acceptable, and a better efficiency
for the low momentum region and its impact on speed will be
studied in the future.

9.3 forward tracking efficiency

Finally, the Forward tracking algorithm Looking Forward com-
pletes the tracking sequence of Allen. The most critical Forward
tracking algorithm parameter is the pT threshold above which
tracks are sought. Two such thresholds are used. The first is
a cut applied on the momentum and pT of the reconstructed
Velo-UT tracks, to save time attempting to reconstruct tracks
which would anyway fall below the forward tracking cutoff.
The second, somewhat tighter, threshold uses the charge and pT
of the reconstructed Velo-UT track to calculate the size of the
SciFi search window in the x (bending) plane.

The momentum distribution for different Long track types is
shown in Figure 9.8. The Forward tracking efficiency and ghost
rate are shown in Figure 9.7. The tracking efficiency for decay
products of beauty and charm hadrons is shown in Figure 9.9,
including electron efficiencies. The Forward algorithm uses
an ANN classifier to reject ghosts before any Kalman filter
is performed, similarly to the strategy followed in the Run 2
reconstruction of LHCb [84, 85].

The physics efficiencies of the tracking reconstruction of Allen,
composed of algorithms Search by triplet, CompassUT and Looking
Forward, meet the requirements of the HLT1 physics program of
LHCb for the Upgrade, documented in [14].

132 tracking sequence physics efficiency

0 50000 100000
p [MeV]

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

2− 0 2
 [rad]φ

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

2 3 4 5
η

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

5 10
of PVs

0

0.01

0.02

0.03

0.04

0.05

0.06

gh
os

t r
at

e

Figure 9.1: The Velo tracking efficiency for all Velo tracks in the event. It is shown as a
function of track (top left) momentum (top right) φ and (bottom left) η. On the
bottom right the ghost rate is shown as a function of the number of primary
vertices in the event.

0 50 100

310×

p [MeV]
0

0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9

1

ef
fi

ci
en

cy

efficiency, not electrons

efficiency, electrons

p distribution, not electrons

p distribution, electrons

Figure 9.2: Velo tracking efficiency and momentum distribution of electron and non-electron
long tracks coming from decays of beauty hadrons.

9.3 forward tracking efficiency 133

0 50000 100000
p [MeV]

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

not electrons

electrons

0 5000 10000
 [MeV]

T
p

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

not electrons

electrons

2− 0 2
 [rad]φ

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

not electrons

electrons

2 3 4 5
η

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

not electrons

electrons

0 50000 100000
p [MeV]

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

0 5000 10000
 [MeV]

T
p

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

2− 0 2
 [rad]φ

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

2 3 4 5
η

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

Figure 9.3: The Velo tracking efficiency for long tracks coming from the decays of (top
quartet) beauty and (bottom quartet) charm hadrons. Within each quartet the
efficiency is shown as a function of track (top left) momentum (top right) pT

(bottom left) φ and (bottom right) η.

134 tracking sequence physics efficiency

0 50000 100000
p [MeV]

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

2− 0 2
 [rad]φ

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

2 3 4 5
η

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

5 10
of PVs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

gh
os

t r
at

e

Figure 9.4: The Velo-UT tracking efficiency for all Velo-UT tracks in the event. It is shown as
a function of track (top left) momentum (top right) φ and (bottom left) η. On
the bottom right the ghost rate is shown as a function of the number of primary
vertices in the event.

0 50 100

310×

p [MeV]
0

0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9

1

ef
fi

ci
en

cy

efficiency, not electrons

efficiency, electrons

p distribution, not electrons

p distribution, electrons

Figure 9.5: Velo-UT tracking efficiency and momentum distribution of electron and non-
electron long tracks coming from decays of beauty hadrons.

9.3 forward tracking efficiency 135

0 50000 100000
p [MeV]

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

not electrons

electrons

0 5000 10000
 [MeV]

T
p

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

not electrons

electrons

2− 0 2
 [rad]φ

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

not electrons

electrons

2 3 4 5
η

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy
not electrons

electrons

0 50000 100000
p [MeV]

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

0 5000 10000
 [MeV]

T
p

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

2− 0 2
 [rad]φ

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

2 3 4 5
η

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

Figure 9.6: The Velo-UT tracking efficiency for long tracks coming from the decays of (top
quartet) beauty and (bottom quartet) charm hadrons. Within each quartet the
efficiency is shown as a function of track (top left) momentum (top right) pT

(bottom left) φ and (bottom right) η.

136 tracking sequence physics efficiency

0 50000 100000
p [MeV]

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

2− 0 2
 [rad]φ

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

2 3 4 5
η

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

5 10
of PVs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

gh
os

t r
at

e

Figure 9.7: The Forward tracking efficiency for all long tracks in the event. It is shown as
a function of track (top left) momentum (top right) φ and (bottom left) η. On
the bottom right the ghost rate is shown as a function of the number of primary
vertices in the event.

0 50 100

310×

p [MeV]
0

0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9

1

ef
fi

ci
en

cy

efficiency, not electrons

efficiency, electrons

p distribution, not electrons

p distribution, electrons

Figure 9.8: Forward tracking efficiency and momentum distribution of electron and non-
electron long tracks coming from decays of beauty hadrons.

9.3 forward tracking efficiency 137

0 50000 100000
p [MeV]

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

not electrons

electrons

0 5000 10000
 [MeV]

T
p

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

not electrons

electrons

2− 0 2
 [rad]φ

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

not electrons

electrons

2 3 4 5
η

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

not electrons

electrons

0 50000 100000
p [MeV]

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

0 5000 10000
 [MeV]

T
p

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

2− 0 2
 [rad]φ

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

2 3 4 5
η

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

ef
fi

ci
en

cy

Figure 9.9: The Forward tracking efficiency for long tracks coming from the decays of (top
quartet) beauty and (bottom quartet) charm hadrons. Within each quartet the
efficiency is shown as a function of track (top left) momentum (top right) pT

(bottom left) φ and (bottom right) η.

10
P E R F O R M A N C E A N A LY S I S

P
erformance is a key component of the develop-
ments contributed with this thesis. For the Allen
application to be used in a production environment,
it should not only deliver the physics efficiency re-

quired by the LHCb physics program, but it should do so at a
high performance. The figure of merit of the application is the
throughput, measured in rate of events per second (Hz). The
rate attainable in a single card determines the number of cards
a prospective GPU HLT1 system would consist of, and plays a
determining role in the feasibility of the system.

In addition, the scalability of Allen to newer hardware de-
termines the expected gain in performance from upcoming
hardware iterations. The sequence execution has been profiled.
A detailed timing breakdown pinpoints the hot sections of the
sequence. The performance of the Velo sequence is compared
with the CPU SPMD reconstruction sequence (see chapter 5).

10.1 methodology

The hardware used for the analysis in this chapter is listed in
Table 10.1. The GPUs considered include a broad variety of
graphics cards. NVIDIA produces the chips in GeForce cards,
which are usually assembled and manufactured by graphics
cards brands, targeted for the consumer market. The Quadro
and Tesla cards are produced and manufactured by NVIDIA
with no middle-man. Quadro is a high-end line of products
targeted for professional designers and video editors. Tesla is
the scientific line of cards, targeted for scientific computing use.

GeForce cards feature video output, high performance on
single precision floating point operations (measured in FLOP
per second or FLOPS) and active cooling. Quadro also features
video output, active cooling and high performance single pre-
cision and error-correcting code memory (ECC). The scientific
cards do not provide video output, however they support ECC

139

140 performance analysis

Card # cores Max freq. Cache DRAM DRAM CUDA
(GHz) (MiB, L2) (GiB) type cap.

GeForce GTX 670 1344 1.06 0.5 1.95 GDDR5 3.0
GeForce GTX 680 1536 1.14 0.5 1.95 GDDR5 3.0
GeForce GTX 780 Ti 2880 0.93 1.5 2.95 GDDR5 3.5
GeForce GTX 980 2048 1.29 2 2.01 GDDR5 5.2
GeForce GTX TITAN X 3072 1.08 3 11.92 GDDR5 5.2
GeForce GTX 1060 6GB 1280 1.81 1.5 5.94 GDDR5 6.1
GeForce GTX 1080 Ti 3584 1.67 2.75 10.92 GDDR5 6.1
GeForce RTX 2080 Ti 4352 1.545 6 10.92 GDDR5 7.5
Quadro RTX 6000 4608 1.77 6 24 GDDR6 7.5
Tesla T4 2560 1.59 4 15.72 GDDR6 7.5
Tesla V100 32GB 5120 1.37 6 32 HBM2 7.0

Card Peak TFLOPS TDP Release date MSRP Allen
(32-bit) (Watts) (mm/yy) ($) settings

GeForce GTX 670 2.63 170 05/12 400 Low
GeForce GTX 680 3.25 195 03/12 500 Low
GeForce GTX 780 Ti 5.34 250 12/13 700 Low
GeForce GTX 980 4.98 250 09/14 549 Low
GeForce GTX TITAN X 6.69 250 03/13 999 High
GeForce GTX 1060 6GB 4.38 120 07/16 249 Low
GeForce GTX 1080 Ti 11.34 180 03/17 699 High
GeForce RTX 2080 Ti 13.34 250/260 09/18 1199 High
Quadro RTX 6000 16.31 250 08/18 4000 High
Tesla T4 8.141 70 09/18 2295 High
Tesla V100 32GB 14.13 250 03/18 8999 High

Allen settings Threads Memory Number of events Repetitions Validation
(-t) (-m) (-n) (-r) (-c)

High 12 700 1000 100 0 (off)
Low 2 700 1000 100 0 (off)

Table 10.1: (Top) GPUs used for benchmarking. (Bottom) Benchmark-
ing options set.

memory, high performance single and double precision, and
passive cooling.

The Allen application is a full realization of the HLT1 sequence
that only requires single precision arithmetic. This was an early
design decision, knowing the various limitations of the graphics
cards in the market, in an attempt to allow as many hardware
options as possible.

ECC memory can protect against bit-errors which might affect
long-running calculations or corruption. Since the Allen appli-
cation reconstructs events which are physically independent
one another, random bit-errors do not carry over other events.
Furthermore, they are likely indiscernible from noise. No effect
was observed by turning on ECC memory in the Allen appli-

10.1 methodology 141

cation, however turning off ECC memory resulted in 10-20%
performance increase.

The reliability and effectiveness of passive and active cooling
should be studied over a period of time, in particular the relia-
bility of active cooling, in terms such as mean-time-to-failures
(MTTF). This study however is beyond the scope of this thesis.
A commissioning of the system will be carried out in the upcom-
ing months to determine the feasibility of Allen in a production
environment.

The Allen tag v0.6 has been used for all tests shown in this
chapter. The application has been compiled with compilers gcc

8.2 and nvcc 10.1.168 using the flags listed in Table 10.2. fast
math is employed. The loss in precision caused by using single
precision and fast math throughout the sequence was found
not to cause physics efficiency loss. The tracking algorithms
discussed in this thesis require simple arithmetic operations.
The nature of tracking (1) creating seeds of hits, (2) extending
forming tracks with new hits, requires a set precision at every
step, but the intermediate results consist of detector measure-
ments, so no carry over of inefficiency occurs. The efficiency
attainable by single precision and fast math is at least enough
to cover the HLT1 use case (see section 9).

gcc compilation flags nvcc compilation flags
-march=ivybridge --generate-line-info

-O3 -g -DNDEBUG -O3 -g -DNDEBUG

--ftemplate-depth=300

--use_fast_math

--expt-relaxed-constexpr

Table 10.2: gcc and nvcc compilation flags used for Allen.

Throughput measurements are performed on dedicated ma-
chines with no other running user processes with the following
methodology:

• Unless explicitly stated, the sequence under study is the
full LHCb HLT1 sequence, described in section 8.2.

• The CPU offload configuration is used, whereby the global
event cut and all prefix sum algorithms are run on CPU
(cref. section 8.4).

• Experiments are run with the minbias dataset, which con-
tains 1000 events.

142 performance analysis

• The sequence of algorithms is run on 2 or 12 concurrent
threads (see table 10.1).

• A configurable number of events is run in parallel for
each thread, typically around 1000. When this number
is greater than the number of available minbias events, a
round robin over the existing ones is performed.

• A number of repetitions inside each thread is run, typically
around 100, to make the measurement less sensitive to
fluctuations.

• The total number of events processed in parallel is given
by the number of streams multiplied by the number of
events multiplied by the number of repetitions.

• The implemented timing service is a wrapper using
std::chrono. A single Timer is started prior to process-
ing sequences in every thread, and it is stopped after all
threads have returned (joined).

10.2 hlt1 sequence performance analysis

The performance of the full HLT1 sequence in Allen is shown in
Figure 10.1. The cards GeForce RTX 2080 Ti, Quadro RTX 6000
and Tesla V100 32GB deliver a performance of roughly 60 kHz
in a single card (57.93, 59.87 and 58.74 kHz respectively). The
30 MHz rate of inelastic particle collisions is therefore realizable
with a system comprising 500 cards, irrespective of the product
line. At the time of writing, these cards represent the top models
in the consumer, specialist and scientific computing market,
respectively.

A system with 1000 Tesla T4 cards would also meet the re-
quirements, with less power draw than the other three configu-
rations. The Tesla T4 model is the only one of the top four that
does not require external power draw, and is fed exclusively
through the PCI-express slot housing it. Older consumer models
deliver a decreasing performance, and even though they are not
considered realistically for an integrated GPU HLT1, they are
however interesting to study the evolution of the technology.

Figure 10.2 shows on the top left the rate of each card versus
its theoretical 32-bit peak TFLOPS. The performance of the appli-
cation seems to linearly scale as a function of the peak TFLOPS
of the cards under consideration. The GeForce GTX 1080 Ti is

10.2 hlt1 sequence performance analysis 143

0 10 20 30 40 50 60
Throughput of sequence (kHz)

GeForce GTX 670

GeForce GTX 680

GeForce GTX 780 Ti

GeForce GTX 1060 6GB

GeForce GTX 980

GeForce GTX TITAN X

GeForce GTX 1080 Ti

Tesla T4

GeForce RTX 2080 Ti

Tesla V100 32GB

Quadro RTX 6000

0 3 6 9 12 15 18
Speedup (times)

Figure 10.1: Performance of full HLT1 sequence across GPU architec-
tures.

deviated from this tendency. The performance differential is
attributed to a combined effect of the increase in CUDA cores,
the increase in L2 cache (from 2.75 MiB to 4 MiB in the Tesla T4,
and 6 MiB in the top three models), and the availability of tensor
cores in later GPU generations, which is used for the hottest
algorithm (cref. Section 6.2).

The rate as a function of release date is shown in the top right
figure. The correlation between release date and performance
is not clear, due to the existence of several product lines, such
as the low profile Tesla T4, on the same release date as the top
three cards. The GeForce GTX TITAN X delivers 14.68 kHz, well
above other GeForce cards nearing its release date. Compared
to the GeForce GTX 780 Ti, its core count is 6% higher, it has
double the amount of L2 cache and its peak frequency is 16%
higher. Unfortunately, no other TITAN card iterations were
available for testing.

The bang per buck, or price performance of the cards under
consideration are plotted against their release date on the bottom
left of Figure 10.2. The bang per buck is calculated as the rate
divided by the manufacturer’s suggested retail price MSRP at
release of each card. The price performance of all GeForce cards
have been fitted linearly, and the data suggests a linear tendency
on all tested consumer hardware. The Quadro and Tesla lineup

144 performance analysis

5 10 15
Peak 32-bit TFLOPs

10

20

30

40

50

60

Tr
ig

ge
r r

at
e

(k
Hz

)

2012 2014 2016 2018
Release date

2012 2014 2016 2018
Release date

10

20

30

40

50

Ba
ng

 p
er

 b
uc

k
(H

z/
$)

2012 2014 2016 2018
Release date

0.0

0.1

0.2

0.3

0.4

Ra
te

 p
er

 w
at

t (
kH

z/
w)

GeForce GTX 670
GeForce GTX 680
GeForce GTX 780 Ti
GeForce GTX 1060 6GB
GeForce GTX 980
GeForce GTX TITAN X

GeForce GTX 1080 Ti
Tesla T4
GeForce RTX 2080 Ti
Tesla V100 32GB
Quadro RTX 6000

Figure 10.2: Trigger rate versus peak TFLOPS, cost and power enve-
lope across graphics cards.

appear as outliers in this graph as one would expect, since they
are marketed and targeted to a different demographic.

The rate per watt of each card as a function of release date
is shown on the bottom right figure. Two models of different
brands of the GeForce RTX 2080 Ti with a different TDP of 250
and 260 watts were considered. The numbers shown here refer
to the 260 watt-model. Irrespective of this detail, the cards show
an increase in power efficiency with time. Due to its low TDP,
the Tesla T4 tops the chart with higher efficiency per watt than
all other cards.

The timing fractions of all algorithms composing the full
Allen HLT1 sequence are shown in Figure 10.3. Color indicates
which subsequence the algorithm belongs to, and all subse-
quence timings are aggregated in the Figure legend. The timings
were obtained with the nvprof tool running the sequence in a

10.2 hlt1 sequence performance analysis 145

GeForce RTX 2080 Ti. It should be noted the timings shown
here indicate the aggregated time each respective algorithm took
to finish execution. However, there is not always a correlation
with the resource consumption of the algorithm. That is, no
information is presented concerning how many Streaming Multi-
processors, registers, or cache were required by the algorithm in
the presented figure.

The SciFi reconstruction dominates the sequence (55.83% of
the time), followed by the Velo reconstruction (23.23%). The
PV finder, UT reconstruction and muon subsequences roughly
contribute 10% of the time to the sequence each. Finally, a
parameterized and simplified implementation of the Kalman
filter, and the selection algorithm run_hlt1 complete the timing
subsequences with less than 2% each.

The top consumers in the chart are the Looking Forward triplet
seeding and the Search by triplet algorithms. The tensor core
implementation of the Looking Forward triplet seeding was
used. In spite of the resource consumption remark stated above,
the graph shows an indication of where the biggest gains in
performance may be obtained by optimizing specific algorithms,
from an Amdahl’s law standpoint [25]. An iterative optimization
process has been followed for the top time consumers during the
elaboration of this thesis, testing different algorithm approaches,
arithmetic formulations, parameter configurations and GPU
kernel configurations, choosing the best performing ones.

10.2.1 Parameter scans

The Allen application can be invoked with various flags. The
flags that impact the performance of the application are listed
in table 10.1. Out of these:

• -c – Setting the validation to off ensures no additional
buffers are requested and fewer data transmissions from
device to host throughout the execution of Allen.

• -m – The memory setting has no impact on performance
other than enabling the creation of additional threads. The
sole requirement is that sufficient memory buffer must be
allocated to prevent allocation exceptions.

• -r – A higher number of repetitions increases the robust-
ness of time measurements.

146 performance analysis

0 5 10 15 20
Fraction of Allen sequence (%)

lf_triplet_seeding
search_by_triplet

pv_beamline_multi_fitter
lf_collect_candidates

lf_quality_filter_x
muon_add_coords_crossing_maps

lf_extend_tracks_x
pv_beamline_peak

scifi_direct_decoder_v4
lf_triplet_keep_best

masked_velo_clustering
compass_ut

ut_search_windows
calculate_phi_and_sort

estimate_input_size
lf_search_initial_windows

lf_fit
consolidate_velo_tracks

muon_sort_by_station
ut_pre_decode

scifi_raw_bank_decoder_v4
is_muon

muon_sort_station_region_quarter
copy_velo_track_hit_number

scifi_pre_decode_v4
consolidate_scifi_tracks

ut_decode_raw_banks_in_order
fill_candidates

scifi_calculate_cluster_count_v4
lf_extend_missing_x

lf_quality_filter
run_hlt1

lf_search_uv_windows
fit_secondary_vertices

velo_filter
ut_find_permutation
muon_pre_decoding
lf_extend_tracks_uv

ut_calculate_number_of_hits
velo_kalman_fit

pv_beamline_histo
consolidate_ut_tracks

copy_ut_track_hit_number
pv_beamline_extrapolate

weak_tracks_adder
copy_scifi_track_hit_number

kalman_pv_ipchi2
lf_quality_filter_length
pv_beamline_cleanup

Velo (23.23%)
PV (13.42%)
UT (9.56%)
SciFi (55.83%)
Kalman (1.66%)
Muon (8.59%)
Common (0.69%)

Figure 10.3: Timing fractions of all algorithms executed on the GPU composing the HLT1
sequence.

10.2 hlt1 sequence performance analysis 147

Therefore, the settings number of events (-n) and number of
threads (-t) are left to tweak the performance of the application.
It should be noted that it is not possible however to increase any
of these parameters ad infinitum, since the memory required by
the card increases linearly with both the number of events and
the number of threads. A parameter scan of the two settings is
shown in Figure 10.4.

0 200 400 600 800 1000
Number of events

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut

GeForce RTX 2080 Ti
Tesla T4

Tesla V100 32GB

2 4 6 8 10 12
Number of threads

Figure 10.4: Scan of parameters number of events and number of
threads for various graphics cards.

The peak throughput is normalized for every card shown in
the figures. For the performance scans shown in the figures, val-
idation was set to off (0), the memory buffer was set to 700 MiB
per thread, and the number of repetitions was configured at
1000. On the left, the normalized throughput is shown as a
function of the number of events. For this Figure, the number
of threads was set to 12. A configuration of 600 or more events
yields a peak performance on all cards shown. The Tesla T4
peaks with 240 events. On the right, the normalized throughput
as a function of the number of threads is shown. The number of
events was set to 1000 in this case. 98% of the peak performance
is obtained with a configuration with 8 threads on the consumer
and high-end scientific cards, whereas the Tesla T4 peaks early
with 4 threads.

The performance of a configuration of 8 threads and 600 events
has been tested: 96% of the peak performance is reached, using
203 MiBs per thread, amounting to 2097 MiB memory utilization
in total, as reported by the Allen memory manager.

148 performance analysis

10.2.2 Velo sequence performance analysis

The Velo sequence has been developed both in CUDA and
SPMD (cref. chapter 5), allowing us to compare performance
with CPUs. The CPUs under consideration are depicted in
table 10.3. All CPUs tested are server CPUs in dual-socket con-
figurations. Three Intel Xeon CPUs are considered, including
two Broadwell processors and a Skylake processor Intel Xeon Sil-
ver 4114. Broadwell processors feature 256-bit YMM registers
and support up to the AVX2 vector-instruction set. The Skylake
processor features 512-bit ZMM registers and supports a subset
of AVX512 specifications 1. An AMD processor has also been
considered, the AMD Ryzen Threadripper 2990WX.

Processor # cores Max freq. Cache SIMD cap. MSRP
(GHz) (L3, MiB) ($)

Intel Xeon 20 3.0 25 AVX2 1166
Broadwell E5-2650
Intel Xeon 20 3.5 25 AVX2 2141
Broadwell E5-2687W
Intel Xeon 16 2.7 13.75 AVX512 694
Silver 4114
AMD Ryzen 64 4.2 64 AVX2 2000
Threadripper 2990WX

Processor Vector extension Mask size Gang size
Intel Xeon AVX2 32 8
Broadwell E5-2650
Intel Xeon AVX2 32 8
Broadwell E5-2687W
Intel Xeon AVX512 32 16
Silver 4114
AMD Ryzen AVX2 32 8
Threadripper 2990WX

Table 10.3: CPU processors and configurations under test.

The number of cores of each processor refers to the total
number of logical cores. In the case of Intel processors, the
processors achieve this number by having half the number of
physical cores and using the HyperThreading technology. The
AMD processor consists of 64 physical cores.

When a SPMD program is compiled with the Intel SPMD Pro-
gram Compiler (ISPC) [67], the targeting vector width and mask

1 Concretely, it supports the extensions avx512f avx512dq avx512cd

avx512bw avx512vl.

10.2 hlt1 sequence performance analysis 149

size must be specified. The vector width must be supported by
the targeted processor, and the supported options cover a range
of vector technologies, ranging from SSE2 to AVX512. The ARM
NEON vector units are also supported. It should be noted that
all x86-64 processors (commonly referred to as Intel x86 64-bit
processors) support at least the set of vector extensions SSE2.
Therefore, a program written in SPMD is compilable for any
Intel x86 64-bit processor.

The manner in which SPMD executes operations is similar
to how NVIDIA GPUs execute code using warps. A gang of
processor elements executes each operation in a masked manner,
and the mask determines whether the operation is written back
or ignored. The gang size and mask size can be configured at
compile time, and several options are available for each vector
width. The configurations chosen for the processors under
analysis are shown in the bottom table of 10.3.

In contrast with GPUs, ISPC guarantees a common Program
Counter be kept throughout the execution of the program by all
gang elements. This removes the need for control synchroniza-
tions (such as CUDA __syncthreads() or OpenCL barrier()).
ISPC also provides a threading model, however the model avail-
able since C++11 with std::thread is instead used.

The Velo reconstruction SPMD implementation is compared
with the CUDA implementation in Allen in Figure 10.5. The
dual-socket CPU processors are outperformed by all graphics
cards with the exception of the GeForce 670 and 680. No effort
was put in optimizing the SPMD translation in the comparison
shown in this Figure. An effective and fully functional SPMD
code was produced from the CUDA implementation with a low
effort translation in an estimated time of less than a week.

The Skylake processor outperforms the Broadwell 2650 pro-
cessor, in spite of its lower core count, frequency and cache. This
is due to the wider vector unit and the consequent availability
of twice as many vector registers of any width. Out of the Intel
processors, the Broadwell 2687W outperforms the others, due
to its higher frequency. The AMD Ryzen Threadripper 2990WX
leads the CPU competition in the chart, with a 1.27× over the
Broadwell 2687W. A speedup of 6.93× between the Tesla V100
and the AMD Ryzen Threadripper 2990WX is observed.

Some problems are more amenable to be solved sequentially
than in parallel. CPU processors, with higher frequency clocks,

150 performance analysis

0 50 100 150 200 250 300
Throughput of Velo sequence (kHz)

GeForce GTX 670

GeForce GTX 680

2x Intel Xeon 2650 v3

2x Intel Xeon Silver 4114

2x Intel Xeon 2687W v3

2x AMD Ryzen 2990WX

GeForce GTX 780 Ti

GeForce GTX 1060 6GB

GeForce GTX 980

GeForce GTX TITAN X

GeForce GTX 1080 Ti

Tesla T4

GeForce RTX 2080 Ti

Tesla V100 32GB

0 3 6 9 12
Speedup (times)

Figure 10.5: Performance of Velo sequence across architectures.

bigger caches and better branch prediction, provide flexibility
upon solving problems not found on many-core processors. The
case of the Velo clustering problem is a clear example where
compromises were made to accomodate the algorithm to the
limited amount of memory of GPUs. The flexibility of CPUs
permits a sequential algorithm to be more efficient than the data-
parallel many-core algorithm in CPU hardware (cref. section 3.1).

On the other hand, it was found that whenever an algorithm
mapped efficiently to a many-core architecture exploiting its
features rather than being limited by them, a translation to
SPMD delivered a good performance as well, which could only
be topped with architecture-oriented tweaking. A performance
speedup of the SPMD translation with respect to the latest pub-
licly available result of the LHCb baseline has been shown [1, 86].
Since then, further optimizations have been done to the LHCb
baseline algorithms, and a detailed analysis will be carried out
in the future.

The CPU Velo clustering could be sped up by implementing
the sequential algorithm instead of the SPMD mask cluster-
ing. A hybrid program has been developed, consisting of a
sequential clustering that prepares data as Structure of Arrays,

10.2 hlt1 sequence performance analysis 151

followed by the SPMD tracking algorithm. Figure 10.6 shows
a comparison between the hybrid CPU programs and the GPU
Velo reconstruction.

0 50 100 150 200 250 300
Throughput of Velo sequence (kHz)

GeForce GTX 670

GeForce GTX 680

2x Intel Xeon 2650 v3

2x Intel Xeon Silver 4114

GeForce GTX 780 Ti

2x Intel Xeon 2687W v3

GeForce GTX 1060 6GB

GeForce GTX 980

2x AMD Ryzen 2990WX

GeForce GTX TITAN X

GeForce GTX 1080 Ti

Tesla T4

GeForce RTX 2080 Ti

Tesla V100 32GB

0 3 6 9 12
Speedup (times)

Figure 10.6: Performance of Velo sequence across architectures. CPU
performance obtained with hybrid program.

A speedup of around 1.5× is observed across the CPUs under
consideration with respect to the SPMD-only program. The per-
formance of CPUs falls behind that from GPUs. A performance
of 64.56 kHz has been obtained on the better performing CPU
AMD Ryzen Threadripper 2990WX, a factor 4.43× behind the
Tesla V100.

SPMD has allowed us to perform low-effort translations to
CPU architectures, while preserving the SIMD data-parallel
design of the application, with minimal intervention required on
the algorithm code. An SPMD version of the Allen framework
is under development, and an LLVM [87] plug-in to effectively
automate algorithms translations. Although other multi-target
middleware languages exist [80, 88], SPMD uses vector-units
delivering a scalable program to future CPU architectures.

152 performance analysis

10.3 integration in data acquisition system

It has been demonstrated that the GPU HLT1 application meets
the physics requirements at a high performance of up to 60 kHz
in a single card. In order for the developed application to make
it into a production environment, it will be necessary to inte-
grate the application in the LHCb infrastructure, optimize the
system and validate its capability to sustain long runs of the
experiment. This section points out several possible configura-
tions and throughput requirements of a production system. It is
out of the scope of this thesis to validate the requirements of a
full-fledged GPU trigger system.

GPUs need servers that host and power them. The form-
factor of the top performing GPU cards, GeForce RTX 2080 Ti,
Quadro RTX 6000 and Tesla V100, is PCIe Gen3, 16x, full-height,
double-slot, with a power draw of 250 W. In addition, the
Tesla T4 is a PCIe Gen3, 8x, half-height, single-slot card, with a
power draw of 70 W. The bandwidth delivered by PCIe Gen3
16x is up to 100 Gb/s full-duplex, while PCIe Gen3 8x is half
the capacity, 50 Gb/s full-duplex.

GPUs require the necessary throughput for data to flow in
and out of GPU memory. It should be noted that due to the
nature of HLT1 applications, the data reduction is such that the
bandwidth required is uneven in the two directions, where the
influx is roughly a factor 30 higher than the outflux. Therefore,
one limiting factor to deploy GPUs is the available (influx) band-
width on PCIe slots. This restricts the usage of PCIe slots that
share bandwidth through the use of a PLX switch, or that don’t
deliver the full 16x (8x) bandwidth. Table 10.4 depicts possible
scenarios relating the GPU HLT1 performance and the influx
and outflux bandwidth requirement. The figures overestimate
event size to 200 kB, providing a safety margin of 33% over the
peak event size of 150 kB.

The bandwidth requirement applies to all components in the
path of the data delivery to the GPUs. For instance, assuming a
GPU capable of processing 60 kHz of events and 2 GPUs in a
server, the network must sustain a 200 Gb/s influx traffic to the
server, and the server must be able to sustain such traffic, both
in terms of network throughput and memory throughput.

In order to deploy servers with GPUs to perform the HLT1,
the entire data acquisition system (DAQ) must be considered.

10.3 integration in data acquisition system 153

Number of servers GPUs in each server Bandwith in Bandwidth out
(1 GPU = 60 kHz) (Gb/s) (Gb/s)

1000 0.5 50 1.67
500 1 100 3.34
250 2 200 6.67
125 4 400 13.33
84 6 600 20

Table 10.4: Relation between number of servers, number of GPUs in
each server and required throughput to satisfy the 30 MHz
collision rate.

For reference, a simplified schematic of the baseline LHCb DAQ
is shown in Figure 10.7 (cref. section 1.2). Only the relevant
components to this discussion are included.

~500

Event builder network

...

Sub-farm switch Sub-farm switch

Event filter farm
~4000 dual-socket nodes

100 Gb/s

100 Gb/s

Event builder PCs

Figure 10.7: Baseline LHCb DAQ architecture.

The event builders (estimated to be 500 in the figure) per-
form this task by distributing event fragments all-to-all in a
load-balanced manner, where every server builds events at an
estimated throughput of 100 Gb/s. Built events are then sent
through the sub-farm switches to the event filter farm, where
events are filtered (HLT1 and HLT2 are performed).

154 performance analysis

The sole prerequisite imposed by the GPU HLT1 application
is that events are built. Hence, it would be possible to alter
the baseline DAQ design to equip servers with GPUs at two
places: (1) the event builders, or (2) the event filter farm. The
first option is depicted in Figure 10.8.

~500

Event builder network

...

Sub-farm switch Sub-farm switch

Event filter farm
~4000 dual-socket nodes

100 Gb/s

10 Gb/s

Event builder PCs Extra GPUs

Figure 10.8: DAQ with GPUs in event builders.

In this configuration, every event builder server is equipped
with GPUs, while the event filter farm suffers no hardware
alteration. Due to the data reduction of the HLT1 application,
the bandwidth requirement from each event builder to the event
filter farm is reduced by a factor 30. Therefore, a link of 10 Gb/s
to the event filter farm suffices to sustain an influx of up to
300 Gb/s in a server. Some motherboards come equipped with
10 G ethernet, effectively freeing the PCIe slot the event filter
farm network card would occupy.

Following the estimation of 500 event builder servers, this
would imply it would be enough to replace one network card
on each event builder server with a GPU that obtains sufficient
performance. As it has been shown in table 10.4, any GPU
delivering 60 kHz meets this criterium. It is possible to add
extra GPU cards to the system, subject to the overhead cost of a
server with network connectivity to the event builder and event
filter farm networks. This provides a means of scalability to
the system (subject to rack space and event builder network

10.3 integration in data acquisition system 155

port availability) that can also act as contingency in case of GPU
failure. Another means of scalability would be to replace or
add GPUs to the event builder nodes. However, if the DAQ
application requires a perfect load-balancing (as is currently the
case), it would be necessary to extend the GPU capabilities of
all event builder nodes at once to scale in this manner.

The event building server would need to sustain the necessary
memory throughput in order to be able to run the event readout,
the event building application, the GPU HLT1 application and
the sendout to the event filter farm. Furthermore, the GPU
HLT1 application expects data in a different format to the event
building application, which would require an additional data
transposition. Tests will be performed in the upcoming months
to validate this requirement.

There are several parameters that are being explored in face
of the DAQ upgrade, which would impact this design, such as
(a) the number of TELL40 readout cards required to read out
the detector, (b) the possibility of a compact configuration with
two TELL40s per event builder server, (c) the disponibility to
use next-generation PCI-express, PCIe Gen4, alongside 200 G
network cards, and (d) the availability of next-generation GPUs.
The final composition of the event builders will determine the
details of a feasible GPU-equipped event builder configuration.

A different possibility is to include the GPUs in the event
filter farm, as shown in Figure 10.9. In this configuration, event
builders suffer no alteration, and deliver the full 100 Gb/s
throughput of events to the event filter farm. GPUs could be
placed in different locations in the event filter farm.

GPUs could be coprocessors of a selected number of event
filter nodes (tagged GPU-equipped EF nodes in the figure). These
GPU-equipped event filter nodes would require meeting the
GPU slot requirements, and possibly additional bandwidth,
such that all the GPUs distributed across event filter nodes
sustain the full 30 MHz of events combined. The selected events
would then be distributed across all event filter nodes through
the sub-farm switches.

Another option would be to prepare GPU accelerator nodes,
configured with as many GPUs as possible and enough net-
work bandwidth to support them. The validation of this node’s
memory throughput would be particularly critical if the ad-
ditional data transposition is required. The configuration of

156 performance analysis

~500

Event builder network

...

Sub-farm switch Sub-farm switch

Event filter farm
~4000 dual-socket nodes

100 Gb/s

100 Gb/s

GPU accelerator node

GPU-equipped EF nodes

Event builder PCs

Figure 10.9: DAQ with GPUs in event filter farm.

number of accelerator nodes and their placement across sub-
farms would have to be compatible with the event filter farm
network. GPU accelerators would process data local to a sub-
farm, which would require a matching between GPU resources
and CPU resources at a sub-farm level.

The scalability of GPUs in the event filter farm would not
have to follow the constraints of the event builders in terms of
space, network ports or load-balanced throughput. However,
other constraints are introduced: (a) only event filter nodes ful-
filling the slot requirements will be able to host GPUs, with the
exception of the Tesla T4 which can be hosted even in current
LHCb farm nodes; (b) event filter nodes equipped with GPUs
have different requirements in terms of network bandwidth, and
would require a slot dedicated to a high-bandwidth network
card; (c) the amount of GPU accelerator nodes is determined
by the computing power of the sub-farm. Fulfilling these con-
straints, it would be possible to extend the system with any
number of GPUs of a varying performance.

Regardless of the chosen configuration in either the event
builders or the event filter farm, the GPUs would be available
to be used opportunistically in periods of no collisions, as the
connectivity to the GPU servers is ensured by definition by the
full-duplex capacity of the links. It would be therefore possible

10.3 integration in data acquisition system 157

to extend the applicability of GPUs to sections of the HLT2
workloads and other applications.

Considerations of the event builder integration

The integration shown in Figure 10.8 is discussed in the fol-
lowing. This is the configuration that is most likely to incur
in cost-savings due to several factors: (1) The cost of the net-
work cards and network infrastructure to sustain the 100 Gb/s
network from the event builders to the event filter farm is ne-
glected. The cost of the 10 G-based network replacing it is an
order of magnitude more affordable. (2) The event filter farm
would not need to process the HLT1 reconstruction stage. The
server processing time saved is estimated to be 50%, according
to Run 2 numbers. While this also holds true for the event filter
farm integration options, the event builder integration has the
advantage of not impacting parasitic resource consumption in
the farm at all (such as the CPU offload resource consumption or
use of memory bandwidth). (3) Similarly to the event filter farm
configuration, GPU resources can be used opportunistically to
perform R&D projects, analyses or HLT2 computation during
LHC downtime.

The LHCb trigger and online technical design report (TDR)
in 2014 [14] described an event builder machine like the one
presented in Figure 10.10a. Each of the CPUs in the dual-socket
server would be assigned the role of a readout unit (RU) or a
builder unit (BU). The RU would receive data through a readout
card, and send and receive data through a EB network card
(cref. section 1.2). The BU processor would then build the
events, and finally send data out through a HLT network card
to the event filter farm.

Since then, a compact configuration has been proposed, shown
in 10.10b. In this configuration, three PCIe 16x slots are required
for each CPU. Each of the CPUs in the event builders would act
as a RU and a BU, and perform the readout, EB network send /
receive, event building and send to the HLT network card. The
memory bandwidth required in this configuration is effectively
double the one required in the original proposal.

It would be possible to add GPUs to either of these configura-
tions. In 10.10c, up to two accelerator cards can be added on the
slots of the BU CPU. Due to the data reduction, the HLT net-

158 performance analysis

CPU+RAM 2

BU

H
LT

net

CPU+RAM 1

R
eadout

E
B

net

RU

(a)

CPU+RAM 2

RU
H

LT
net

E
B

net

R
eadout

CPU+RAM 1

R
eadout

E
B

net

H
LT

net

RU BUBU

(b)

CPU+RAM 2

BU

CPU+RAM 1

R
eadout

E
B

net

RU

10G
H

LT
net

A
ccelerator

A
ccelerator

(c)

CPU+RAM 2CPU+RAM 1

R
eadout

100G
E

B
net

A
ccelerator

RU BU

10G
H

LT
net

R
eadout

100G
E

B
net

A
ccelerator

RU BU

10G
H

LT
net

(d)

Figure 10.10: (a) (b) Event building server configurations. (c) (d) Event
building with accelerator server configuration. Images
reproduced with permission from T. Colombo.

work card becomes then a 10 G card, which the mainboard can
equip, freeing a slot. A compact EB-HLT1 node configuration
is shown in 10.10c, where the accelerator effectively replaces
the HLT network card. A data reduction of 10× is assumed in
this Figure, thus requiring two 10 G network cards. However,
in the more realistic scenario of 30-to-1 HLT1 data reduction, a
single 10 G card would be enough to accomodate the 6.67 Gb/s
maximum output rate of the node, as shown in table 10.4.

Memory throughput may be a concern in this last scenario.
In order to not require any additional memory throughput, the
Allen application should support the data format produced by
the event building application, with no additional transposition
requirements. If that were the case, the memory throughput
required in the Allen application would be equivalent to the
memory throughput required to send through the HLT network
card, which will be commissioned by the LHCb Online team.

The GPU HLT1 to which this thesis has contributed can be
run irrespective of the DAQ final implementation. A more
detailed study and a test of a vertical-slice of the system will
be performed to evaluate the options presented. A strategic

10.3 integration in data acquisition system 159

placement of the GPUs in the event builders can lead to cost-
savings in the final system, with no foreseeable drawbacks in
terms of physics efficiency, producing a homogeneous system.
Additional work to allow a full-evaluation and commission of
a GPU-equipped DAQ will be carried out in the upcoming
months.

Part IV

T H E S I S R E S U LT S

11
C O N C L U S I O N S

I
n this final chapter, the presented work in the docu-
ment is analyzed and summarized. First, a summary
of all chapters is presented. The publications and
their content are discussed next. Finally, the future

directions stemming from the work in this thesis are presented.

11.1 summary

The LHCb detector at the Large Hadron Collider at CERN,
Switzerland, will be upgraded in 2020, alongside its Data Ac-
quisition system and Event Filter farm. Bunches of particles
will collide at a rate of 30 MHz and then be reconstructed and
selected in near-time on a farm consisting solely of off-the-shelf
components, in a process known as High Level Trigger. The data
rate is estimated to increase by 40×. The LHCb upgrade recon-
struction is therefore a massive data-processing problem with
potential for parallelization on modern processor architectures.

Hardware and software improvements were projected in the
planning stages of the LHCb upgrade [14]. However, the com-
pute resource cost and code performance were underpredicted.
In 2016, the shortfall in computing performance to cope with
the required data rates was estimated to be between 6 and 10×,
and code modernization and alternative algorithms were being
studied to close the performance gap. This thesis contributes
parallel algorithms and introduces the possibility to run part of
the High Level Trigger in Graphics Processing Units (GPUs).

Chapter 1 introduces the upgrade LHCb detector and all the
subdetectors that compose it. The Data Acquisition system is
divided in three parts: (1) In the Event Readout, raw data are
read from the detector. The data are packed and distributed to
the event builders. (2) In Event Building, the collision fragments
from every readout unit are combined into single coherent data
packets known as events. (3) The last stage is Event Filtering,
where events are reconstructed and selected according to physics

163

164 conclusions

indicators. The reconstruction process occurs in software, in
two stages known as High Level Trigger 1 (HLT1) and High Level
Trigger 2 (HLT2). The HLT1 will reduce data at a ratio of 30:1,
and will need to sustain the full LHC collision rate at LHCb
of 30 MHz. This thesis contributes mostly to the HLT1, which
consists of decoding, clustering, pattern recognition, estimators
and selection algorithms.

In chapter 2, the foundations of parallel computing are dis-
cussed. While hardware architectures behind central processing
units (CPUs) have historically optimized sequential computing,
the trend stopped around 2004 due to heat and power consump-
tion issues. Modern processors offer an increasing number of
cores, and parallelism can be exploited with data, instruction,
thread and process parallelism. Memory plays a fundamental
role in computing, albeit its performance has not increased at
the same pace as that of processing power. As such, it is vital
to efficiently use the hierarchical memory models of modern
processors in order to obtain better performance. Tools such
as the Roofline model help describe and understand the perfor-
mance limitations according to memory access requirements of
applications.

GPUs are a kind of parallel processors that appeared origi-
nally to deal with optimization of workloads involving image
and video processing. Since the early 2000s, GPUs became
programmable with generic shader programs that would allow
execution of general purpose code, leading to the general pur-
pose GPU computing programming model (GPGPU). Modern
GPUs have further extended programmability of their compo-
nents, and development environments similar to those of CPUs
exist. GPUs are programmable with data-parallel programming
models, and are efficient when dealing with massively parallel
workloads.

Particle collisions at LHCb yield a rate of 30 million inde-
pendent events that must be reconstructed in real time. The
increase in number of collisions per bunch crossing and the
removal of the hardware trigger lead to a data rate increase for
which a computing hardware replacement does not suffice. The
algorithms that conform the HLT reconstruction stages must be
optimized to efficiently use the characteristics of modern proces-
sors. This thesis contributes in the area of parallel software for
High Energy Physics problems. In addition, GPUs are explored
as alternative architectures optimized for parallel workloads.

11.1 summary 165

This thesis contributes as well to the fundamental pieces of a
GPU High Level Trigger 1 for LHCb.

Part II discusses parallel design and implementations for
reconstruction algorithms of the LHCb HLT sequences. All al-
gorithms are parallelized in two dimensions: (1) Each event is a
physically independent event, and therefore they are processed
in parallel, independently; (2) the processing of each indepen-
dent event is further parallelized, exploiting intra-event paral-
lelism, where possible. The proposed implementations make
the assumption the available memory per thread is small, of
the order of a megabyte. This design decision permits to target
multi and many-core architectures such as GPUs, where the
available memory is orders of magnitude smaller than that of
CPUs.

Chapter 3 introduces the problem of decoding as it appears
in four LHCb subdetectors: Velo, UT, SciFi and the Muon sta-
tions. For all cases studied, the number of measurements in
each subdetector is first decoded. Then, an accumulated sum
yields offsets to the subdetector parts. Finally, the subdetector
is decoded in parallel. While the UT, SciFi and Muon decoded
data are sufficient to proceed to the next reconstruction stages,
in the case of the Velo subdetector an additional clustering stage
must be performed. A parallel algorithm for performing the
Velo clustering is presented and validated.

Chapters 4, 5 and 6 discuss the pattern recognition problem
of track reconstruction. The problem is defined in chapter 4, with
references to existing detectors and a concise description of the
efficiency indicators that dictate the goodness of reconstructed
tracks, applied to the LHCb case. Track reconstruction are
divided in two kinds: (1) local methods form track iteratively,
extending one track at a time. (2) Global methods transform the
problem into an equivalent formulation, possibly more favorable
to the underlying executing hardware, where solutions map to
tracks.

The author studies the sequential implementation and pro-
poses a parallel local method for track reconstruction Search
by triplet in chapter 5, applied to the Velo reconstruction use
case. The method iterates every Velo module only once, process-
ing all measurements in each module in parallel. First, track
seeds are created from neighboring triplets of modules, check-
ing whether the used flag has been set on every measurement.
Then, tracks are forwarded to the next module of the detector,

166 conclusions

and measurements are flagged as used whenever a compatible
measurement is encountered. These two steps are iterated until
the entire detector has been traversed. A GPU implementation
and a CPU implementation have been developed, and a variety
of architectures are evaluated. The Search by triplet algorithm
is a state-of-the-art tracking algorithm, both in terms of physics
efficiency and performance.

The Forward tracking, whereby Velo and UT tracks are ex-
tended to the LHCb SciFi subdetector, is studied in chapter 6.
First, the current sequential implementation is analyzed, based
on a global histogramming technique. The shortcomings for
parallelization are identified: the implementation deals with
a complex variety of use cases, resulting in a branchy code-
base that would perform inefficiently on data-parallel hardware
architectures. Instead, a parallel algorithm Looking Forward is
proposed. Similarly to Search by triplet, a parallel local method
is employed by visiting the x layers composing the detector in
search for neighboring triplets of measurements. A specializa-
tion of the triplet search is shown by using modern Tensor cores
available in NVIDIA GPUs. The method yields a satisfactory
physics efficiency and performance.

The Kalman filter is a widely used estimator for trajectories
of objects. In LHCb, it is used at several stages in the recon-
struction to better estimate the state of particles throughout the
detector. A data-parallel implementation of the Kalman filter
is proposed in chapter 7. Although the Kalman filter presents
conceptually iterative stages with data dependencies, many par-
ticles can be reconstructed in parallel. The developed Kalman
filter is cross-architecture, and allows for a configurable floating
point precision. Three software packages have been developed:
(1) Cross-Kalman Mathtest is an efficient implementation of the
underlying arithmetic in the Kalman filter discrete formulation,
optimized across architectures. (2) Cross-Kalman mimics the con-
ditions in the LHCb reconstruction, making an efficient use of
vector units in CPU processors through a static resource assign-
ment scheduler. (3) TrackVectorFitter is a vectorized realization of
the fitter in the LHCb framework, available as a 1:1 replacement
of the previous fitter. The Kalman filters contributed have been
validated. The performance of the implemented Kalman filter
arithmetic has been shown to peak the attainable performance
in the processors under analysis with Roofline models.

11.1 summary 167

The preexisting LHCb framework Gaudi and its specializa-
tions are optimized for single event execution per thread, where
individual threads are assigned to an event. Gaudi imposes no
restrictions on the algorithms, permitting memory to be dynam-
ically allocated, and a branchy control flow. As a consequence,
it is not a suitable framework for the requirements of many-core
architectures, which require thousands of events be executed in
parallel to achieve an efficient use of the underlying hardware.
In spite of previous work to enable Gaudi to use GPUs as accel-
erators, the thousand in-flight events requirement contradicted
the cache-friendly single-event sequence execution of Gaudi.

Part III discusses the need of a GPU framework, its proposed
design, implementation, and the results achieved with it. The
groundwork is developed in chapter 8, where a framework
for massively parallel physics reconstruction Allen is presented.
The framework can be configured with a number of threads,
events and repetitions. Each of the Allen threads spawns a
CUDA stream that is able to offload work to the GPU in an
asynchronous and non-blocking manner, and so each thread
executes the framework sequence independently. The number of
events configured determines the batch of events upon which the
sequence will be executed in parallel. The number of repetitions
allow to configure the framework to run continuously, allowing
more precise time measurements with fewer fluctuations.

The Allen framework allows a sequence of algorithms to be
configured, which is then executed in parallel over a number of
events. Algorithms are not allowed to dynamically allocate mem-
ory, since the built-in GPU memory manager is synchronous
and blocking. Instead, a custom dynamic memory manager
has been developed. Each thread instantiates its own memory
manager, which allocates a fixed memory at the beginning of the
program execution. The memory manager handles memory re-
quirements prior to each algorithm’s execution asynchronously.
The tight memory requirements of GPUs are optimized by devel-
oping each algorithm in the framework to use as little memory
as possible. The framework allows executing GPU and CPU
algorithms, and makes an efficient use of the architectures to
achieve state-of-the-art performance.

During the course of this thesis, a full realization of the LHCb
HLT1 on GPUs has been achieved with the Allen framework.
The sequence consists of up to 70 GPU algorithms, and rep-

168 conclusions

resents the first GPU-only High Level Trigger sequence ever
realized for an LHC experiment.

The physics efficiency of the tracking sequence in the Allen
framework is shown in chapter 9. The efficiency numbers were
obtained using the framework, which allows validating the
results after each run. The Velo, UT and Forward tracking
efficiencies, to which this thesis has contributed have been dis-
cussed. The efficiencies obtained meet the HLT1 requirements
of the LHCb upgrade physics program.

Finally, the performance of the Allen HLT1 application on
various GPU models has been discussed in chapter 10. Their
performance, power consumption and price have been dis-
cussed for all GPU models under consideration. The best per-
forming cards, the Quadro RTX 6000, Tesla V100 32GB, and
GeForce RTX 2080 Ti, achieve a performance close to 60 kHz,
while the Tesla T4 reaches a performance of 29 kHz. The full
collision rate of 30 MHz would be realizable with 500 cards
(60 kHz) and 1000 cards (30 kHz), which give a notion of the
size of a prospective production system.

The LHCb experiment faced an upgrade phase required by the
evolution in detector technologies, physics goals and increase
in accelerator’s collision rate. Early attempts to meet those
goals highlighted serious difficulties in achieving the required
performance, where scaling the existing system was not a valid
alternative.

This thesis has contributed the fundamental building blocks of
a GPU LHCb HLT1, and has shown the feasibility to efficiently
run HEP workloads in the LHCb reconstruction use case. It
has been demonstrated that it is possible to implement the full
HLT1 on GPUs, serving as an innovative drop-in replacement
for classic server farms with potential to incur into cost-savings
in the final system configuration, while preserving the physics
and throughput goals of the experiment upgrade.

11.2 publications

The following publications have been produced as a result of
the work in this thesis:

• D. H. Cámpora Pérez, N. Neufeld, and A. Riscos Núñez. A
Fast Local Algorithm for Track Reconstruction on Parallel

11.2 publications 169

Architectures. In: 2019 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW) (2019),
pp. 698–707. Included as appendix A.

The parallel local tracking algorithm Search by triplet was
presented as an efficient solution for the Velo reconstruc-
tion. The same design was carried over from the origi-
nal GPU implementation to a CPU implementation using
the SPMD programming model, obtaining a performance
speedup on both architectures. In order to test the GPU
implementation, a GPU sequence framework was presented.
The performance was optimized for the architectures un-
der analysis by performing parameter scans. Search by
triplet is a state-of-the-art tracking algorithm for the LHCb
Velo subdetector.

• P. Fernandez Declara, D. H. Cámpora Pérez, J. Garcia-
Blas, D. vom Bruch, J. D. Garcia, and N. Neufeld. A
parallel-computing algorithm for high-energy physics par-
ticle tracking and decoding using GPU architectures. In:
IEEE Access (2019), pp. 91612–91626.

The UT decoding algorithm and the UT tracking algorithm
were designed as parallel efficient algorithms for the GPU.
The UT sequence contributed as part of this thesis decodes
efficiently the UT detector into a sorted structure of arrays,
which enables good performance on the UT sequence over-
all. The parameters of the algorithm allow a configurable
trade off between performance and physics efficiency. The
default configuration has been tuned to fulfill the physics
program for the UT detector in LHCb.

• D. H. Cámpora Pérez. LHCb Kalman Filter cross architec-
ture studies. In: Journal of Physics: Conference Series 898.3
(2017), p. 32052.

• D. H. Cámpora Pérez, O. Awile, O. Bouizi, N. Neufeld.
Cross-architecture Kalman filter benchmarks on modern
hardware platforms. In: Journal of Physics: Conference Series
1085 (Sept. 2018), p. 032046.

• D. H. Cámpora Pérez, O. Awile, and C. Potterat. A High-
Throughput Kalman Filter for Modern SIMD Architectures.
In: Euro-Par 2017: Parallel Processing Workshops. Springer
International Publishing, 2018, pp. 378–389.

170 conclusions

• D. H. Cámpora Pérez and O. Awile. An efficient low-
rank Kalman filter for modern SIMD architectures. In:
Concurrency and Computation: Practice and Experience 30.23
(Dec. 2018), e4483. Included as appendix B.

A vectorized efficient Kalman filter was designed and im-
plemented over a variety of architectures. Data-parallelism
is achieved through fitting several particles at a time, and
a static scheduler is employed to occupy processor units
on each fit iteration. Three software packages were pro-
duced from this work: An arithmetic test allows checking
the efficiency of the implementation; a cross-architecture
Kalman filter of configurable precision was produced as
a standalone application; and the vectorized Kalman fil-
ter was also integrated into the LHCb framework. The
Kalman filter work has been presented iteratively on the
above publications. The vectorized Kalman filter is an
efficient parallel implementation which will impact the
performance of the LHCb upgrade reconstruction. In addi-
tion, it serves as a self-contained cross-architecture LHCb
benchmark.

11.3 future work

The work presented in this thesis has numerous implications,
and opens research paths for many-core architectures in High
Energy Physics.

The amenability of many-core architectures like GPUs to solve
High Energy Physics problems has been amply discussed. Paral-
lel decoding algorithms, which are typically solved sequentially,
can be solved in parallel by following a strategy loosely consist-
ing in a pre-decoding phase, a prefix sum, and finally a parallel
decoding algorithm. Other subdetector decoding algorithms
may be ported following a similar design.

The tracking algorithms developed exploit a local method in
parallel. The triplet search design has been shown to efficiently
reconstruct the Velo tracking detector, as well as the seeding
phase of the Forward tracking. Other tracking detectors may
also be efficiently reconstructed by employing the presented
technique. In addition, the developed reconstruction algorithms
may be reused for the tighter requirements of the High Level
Trigger 2 reconstruction sequence in LHCb. Configuration op-

11.3 future work 171

tions will be explored to extend the current algorithms, both to
yield better physics efficiency and to be more generic to other
detectors.

The vectorized Kalman filter work has been integrated in the
LHCb Gaudi sequence. In order to use the vectorized Kalman
filter as part of the HLT2 of the next LHCb run, the HLT2
sequence will be tested with various configurations. Further
optimizations will be performed in components used by the
Kalman filter, such as the Runge Kutta extrapolator.

Various alternatives are being considered to port the entire
Allen sequence to run on CPUs. An automatic translator tool
from CUDA to SPMD is under development, which currently
allows converting simple CUDA algorithms into SPMD. Middle-
wares like Kokkos or Alpaka may be considered as alternatives
to maintain a single codebase which can run on CPU hardware
as well as GPUs. Alternatively, simple CUDA functions using
a restricted set of GPU functionalities may be translatable if
thread-strided loops are always used. In order to deploy a GPU
HLT1 in LHCb, either of these solutions will required to be
implemented.

A complete HLT1 on GPUs has been developed and its main
components have been presented in this thesis. In order to
enable a production-ready environment, work will proceed in
optimizing the sequence and integrating with preexisting com-
ponents of the LHCb software infrastructure. A cost comparison
and full system study will be performed in the future to decide
whether the GPU sequence is realized in the upcoming LHCb
upgrade.

The Allen framework is extensible, and enables the LHCb
community to port other algorithms in the reconstruction to
GPUs. Other subdetector algorithms are likely to be portable
to GPUs in similar manners and will be explored in the future.
The presented GPU work demonstrates a full sequence on GPUs
is possible under the real-time tight constraints of an LHC
experiment reconstruction, and it may lead to other experiments
taking inspiration in the presented work to explore utilization
of coprocessors. The Allen framework is being considered to
be extended to serve as a generic framework to support the
reconstruction of any High Energy Physics workload.

APPENDICES

173

A
A FA S T L O C A L A L G O R I T H M F O R T R A C K
R E C O N S T R U C T I O N O N PA R A L L E L
A R C H I T E C T U R E S

175

A fast local algorithm for track reconstruction on
parallel architectures

Daniel Hugo Cámpora Pérez∗†
∗ CERN

CH-1211 Geneva 23
Geneva, Switzerland

Email: dcampora@cern.ch

Niko Neufeld∗ Agustı́n Riscos Núñez†
† Research Group on Natural Computing

Universidad de Sevilla
ETSI Informática, Av. Reina Mercedes, s/n,

41012, Sevilla, Spain

Abstract—The reconstruction of particle trajectories, tracking,
is a central process in the reconstruction of particle collisions in
High Energy Physics detectors. At the LHCb detector in the
Large Hadron Collider, bunches of particles collide 30 million
times per second. These collisions produce about 109 particle
trajectories per second that need to be reconstructed in real time,
in order to filter and store data. Upcoming improvements in the
LHCb detector will deprecate the hardware filter in favour of a
full software filter, posing a computing challenge that requires a
renovation of current algorithms and the underlying hardware.

We present Search by triplet, a local tracking algorithm
optimized for parallel architectures. We design our algorithm
reducing Read-After-Write dependencies as well as conditional
branches, incrementing the potential for parallelization. We
analyze the complexity of our algorithm and validate our results.

We show the scaling of our algorithm for an increasing number
of collision events. We show sustained tests for our algorithm
sequence given a simulated dataflow. We develop CPU and GPU
implementations of our work, and hide the transmission times
between device and host by executing a multi-stream pipeline.

Our results provide a reliable basis for an informed assessment
on the feasibility of LHCb event reconstruction on parallel
architectures, enabling us to develop cost models for upcoming
technology upgrades. The created software infrastructure is
extensible and permits the addition of subsequent reconstruction
algorithms.

I. INTRODUCTION

LHCb is a large particle physics detector operating at the
CERN Large Hadron Collider [1]. From 2020 on it will
produce data at a rate of 40 Tbit/s [2]. A data selection will
be performed in order to record interesting events 1 from a
particle physics standpoint. The data acquisition system will
be upgraded [3] to process all events in a commodity processor
farm, deprecating the current hardware trigger. The increase
in data rate and the removal of the hardware trigger pose a
real-time computing challenge.

Different solutions are being studied to be able to process
this enormous volume of data. The current LHCb trigger farm
is composed solely of Intel Xeon-based servers, however the
recent adoption of alternative architectures and accelerators
in other detectors’ data acquisition systems are an indication
that other solutions may also be feasible [4] [5] [6]. Software

1An event corresponds to a single crossing of the Large Hadron Collider
proton beams.

demonstrators are fundamental towards implementing new ar-
chitectures to the LHCb trigger farm, where price performance
and software maintainability aspects should be taken into
account.

Track reconstruction consists in determining the trajectories
of particles from the signal pixel hits left on their path. The up-
graded vertex locator (Velo) detector will span 52 consecutive
silicon pixel modules, placed very closely to the interaction
point [7]. The Velo reconstruction constitutes the first stage
of tracking in LHCb. Tracks created at this stage are used
for determining the locations of the collisions, and serve as a
seed and are extended to subsequent LHCb tracking detectors.
Hence, the Velo reconstruction is fundamental for the correct
functioning of LHCb.

Various track reconstruction techniques have been explored
in literature. Local methods find tracks iteratively. The base-
line LHCb Velo reconstruction algorithm consists in a track
forwarding technique, based on finding candidate pairs and
extending them over iterative detector modules [8]. The need
for flagging visited hits sequentially makes this technique
unsuitable without modification to parallel architectures. Find-
ing all compatible triplets can be parallelized dropping the
flagging mechanism, like in the seeding phase of [9]. How-
ever, this is inefficient for densely populated detectors. Local
methods are commonly used in conjunction with an estimator
like the Kalman filter [10] to fit forming tracks and select
hits [11]. Spatial reductions like KD-tree structures [12] or
search windows help reduce the dimensionality of hits under
consideration.

On the other hand, global methods adapt an equivalent
formulation of the problem, where solutions map to tracks.
The Hough transform [13] [14] converts all hit points into a
histogram representation in polar coordinates, where peaks are
equivalent to compatible hits. The Retina algorithm [15] builds
a heatmap for each hit to determine compatible tracks. The
automata technique [16] [4] consists in creating a weighted
graph representing the connectivity of every hit, and traversing
it to find the best tracks.

We present Search by triplet, a fast local method optimized
for Velo track reconstruction on parallel architectures. We
sort hits in all modules and define tight search windows. We
adapt the track forwarding technique to expose parallelization

176 appendix a

with an iterative two-step tracking. We iterate over each
detector module only once, maximizing temporal and spatial
locality. We flag hits while maintaining parallelizability of
each individual step, avoiding Read-After-Write (RAW) data
dependencies. We employ a least-squares fit for track fitting,
given the expected tracks in the Velo region are straight lines
due to the lack of magnetic field interaction. We use Monte
Carlo simulation of LHCb particle collisions. This allows us to
validate our algorithm by comparing trajectories generated by
the simulation, also referred to as true particle trajectories,
against the reconstructed tracks obtained as output of our
algorithm.

We develop our algorithm using the SIMT programming
model [17], targeting GPGPUs. In order to efficiently use the
resources available on GPUs, we create a software framework
for performing data parallel event reconstruction. We employ
a dynamic GPU memory manager to handle algorithmic
data requirements, which allocates and frees GPU memory
segments based on a data dependency tree. Our framework
can run several GPU streams in parallel. We hide the latency
of data transmissions by employing a pipeline that reconstructs
events while performing memory read and write operations.

We translate our algorithm to the SPMD programming
model [18], producing a vectorized algorithm suitable for
CPUs. We discuss the design of our algorithm and assess
its performance and scalability on modern CPUs and GPUs.
We run our software in several streams and study how many
concurrent streams are required for saturating our GPUs.

Our work will directly impact the decision on what hard-
ware to acquire for the upcoming upgrade of the processing
farm of LHCb. The developed GPU framework is extensible
and allows for other parts of the reconstruction to be imple-
mented and evaluated on many-core architectures.

II. VELO RECONSTRUCTION

The upgraded Velo detector will be a pixel-based particle
detector [7], spanning a total of 52 detector modules. A
schematic of the detector is shown in Figure 1. The detector
modules are placed in two sides, with 26 modules on each side.
The interaction region marks where the collisions are expected
to occur. The nominal acceptance angle of the LHCb detector
is 15−300mrad in the forward region. The Velo detector will
detect by design all particles produced in primary vertices2 in
the LHCb coverage angle on at least 3 modules [19].

In the Velo region, the effect of the LHCb magnet is
negligible. Particle tracks detected in the Velo detector are
therefore expected to be straight lines. Reconstructed Velo
tracks serve as seeds for reconstructing particle trajectories
through the other LHCb tracking detectors, and allow the
reconstruction of vertices where the collisions happened.
Additionally, Velo reconstruction occurs early in the LHCb
reconstruction process. Therefore, the Velo reconstruction is
of paramount importance towards a successful trigger.

2A primary vertex is the reconstructed location of an individual particle
collision.

x

z

cross section at y=0

y

x

1m

390 mrad 70 mrad

15 mrad 66 mm

interaction region showing
2 x σ ~ 12.6 cmbeam

VELO fully closed
(stable beams)

6 cm

VELO fully open

Figure 1: A schematic of the upgraded Velo detector. The
top image shows a section in the XZ plane, with detector
modules laying in two sides. The images at the bottom show a
frontal view of each module in the XY plane, with subdivisions
indicating detector chips. Each detector chip has a resolution
of 256× 256 pixels.

The physics quality of found tracks can be evaluated
according to three indicators [20]. Particles are considered
reconstructible in the Velo subdetector if at least three hits
were left in different modules on its path.

• The track reconstruction efficiency is the probability to
reconstruct a particle travelling through the detector, and
can be determined by the ratio between the reconstructed
tracks of reconstructible particles, over all the recon-
structible particles:

Nreconstructed and reconstructible

Nreconstructible
(1)

• The fake track fraction is the ratio between the recon-
structed tracks that are not associated to any Monte Carlo
particle (fake tracks), and all the reconstructed tracks:

Nfake tracks

Nreconstructed tracks
(2)

• Finally, the clone track fraction refers to the fraction of
tracks associated to the same Monte Carlo particle as
another reconstructed track:

Nclone tracks

Nreconstructed tracks
(3)

In spite of the simplicity of Velo trajectories, Velo track
reconstruction should maximize reconstruction efficiency, min-
imize fake fraction and clone fraction at a rate of up to 109

tracks per second. The Velo reconstruction algorithm is one
of the main time contributors in the current first stage of
software trigger [3], also referred to as High Level Trigger 1,
and therefore it would have a high theoretical speedup if it
were parallelized according to Amdahl’s law [21].

appendix a 177

A. Sequential algorithm

Track forwarding is a local method consisting in finding
track candidates and forwarding them over the rest of detector
modules. The nominal LHCb algorithm [8] finds a candidate
pair of hits fulfilling a compatibility condition in neighbouring
modules on the same side. Then, the forwarding phase con-
sists in extrapolating the candidate’s trajectory to subsequent
modules, finding hits that fulfill an extrapolation condition.
Tracks are forwarded until either no modules remain, or no
hits fulfilling the extrapolation condition are found on two
consecutive modules on the same side. Hits are flagged upon
finding tracks of 4 or more hits, so they are not considered
for other tracks. The process is repeated until no candidates
remain.

Additional design decisions specific to the Velo detector
have been taken in the sequential algorithm. Tracks are re-
quired to consist of at least three hits. Three-hit tracks are
required to have no flagged hits and to pass a fit cut, since
they could potentially be formed out of noise. This is less
likely on tracks with more hits, as each additional track hit
has to fulfill the extrapolation condition.

A number of modules can be missed in the forwarding
phase. This stems from a physical condition: A particle may
not leave a signal on a module in its path. The probability of a
track missing a signal in a module while having left signals in
the precedent and posterior modules is under 1%. However,
the probability of a track missing two consecutive modules
on the same side is under 0.01%. Therefore, the sequential
algorithm allows for a missing module on the last signal side.

The sequential algorithm has been validated to deliver the
required physics performance. However, in our opinion there
are some fundamental design shortcomings. It should be noted
that the solution found by the algorithm is deterministic,
although it depends on the order in which hits are considered.
Hits are sorted prior to the reconstruction taking place, and
the order must be strictly followed for the results to be
reproducible. Additionally, hits are required not to be flagged
before checking the compatibility or extrapolation conditions.
These two facts are implicit RAW dependencies, and make
parallelization in the algorithm unfeasible without blocking
conditions.

III. SEARCH BY TRIPLET

We propose a data parallel approach to Velo reconstruction.
Events are physically independent, and can be reconstructed in
parallel. Within an event, several tracks can be reconstructed
in parallel. Also, events are sufficiently small that they are
amenable to be processed by relatively small kernels, avoiding
register spilling.

The Search by triplet algorithm is composed of five sub-
algorithms that are described independently. For all complexity
considerations, we generalize our algorithm to m consecutive
detector modules, and an average number of hits in each
module n.

Sort by phi
Given a list of module hits as input, no assumption can

be made as to the order of hits inside each module. This
algorithm sorts each of the module hit sets increasingly
according to ϕ, calculated as the 2-argument arctangent for
each hit with respect to the origin of coordinates. Given
the expected number of hits is small, a method employing
shared memory3 is used for storing the newly calculated ϕ
and finding the sort permutation. The permutation is then
applied to hit coordinates, yielding sorted Structure of Arrays
for each module. A parallel insertion sort method has been
implemented for calculating the permutation. The complexity
of this algorithm is O(m · n2).
Find candidate windows

In order to minimize the amount of candidates considered
in subsequent steps, the first and last hits in the region
of acceptance in the preceding and following modules are
calculated for every hit. Figure 2 depicts this process. Hit c0
would have one candidate on both the preceding and following
modules, whereas c1 would have one and two respectively.
This process is repeated for every hit in every module that has
a preceding and following module. All modules are processed
in parallel. In order to find the first and last candidate, a binary
search in ϕ is performed. The complexity of this algorithm is
therefore O(m · n · log(n)).

z

φ

φ0
φ0 window

φ1 window
φ1

c0

c1

Figure 2: Three consecutive modules with hits are depicted.
For hits c0 and c1, their respective ϕ angles and opening win-
dows in the preceding and following modules are highlighted.
c0 has a compatible hit in the preceding module and another
one in the following module, on the left and right respectively.
c1 by contrast has one hit in the preceding module and two in
the following module.

Track seeding and track forwarding
The track seeding algorithm operates on three consecutive

modules at a time. It assigns threads4 to hits in the middle
3In our GPU implementation, the configurable L1-cache shared memory

is employed, due to its low latency and high throughput. In our CPU
implementation, main memory is employed.

4The CUDA terminology thread and block is employed here. Equivalently
for the CPU implementation, program instance and gang [18].

178 appendix a

module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.

φ0

φ1

φ2

φ3

t0

t1

t2

t3

(a)

φ0

φ1 c1

c0

(b)

t0

t1

t2

t3

t4

t5

φ0

φ1

φ2

φ3

φ4

φ5

(c)

Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.

appendix a 179

Track seeding and track forwarding are the building blocks
of our tracking algorithm. Figure 3 depicts five consecutive
modules being processed. A track seeding stage (b) is in-
terleaved between track forwarding stages (a) and (c). This
mechanism benefits from temporal and spatial locality, since
the data-flow is such that module hits are revisited after
every forwarding stage. The module processed in the track
forwarding stage in Figure 3a is revisited in the subsequent
track seeding stage in Figure 3b. This control-flow is com-
patible with our flagging mechanism, and guarantees flags be
populated prior to seeding stages.

Both seeding and forwarding exploit intra-event parallelism,
and several independent events are assigned to independent
blocks, for inter-event parallelism. The worst-case complexity
of track seeding is O(m · n3). Track forwarding performs a
binary search on every module, and the maximum number of
tracks created is bound by m · n. Therefore, its worst-case
complexity is O(m2 · n · log(n)).
Weak track filter

The weak track filter algorithm operates on three-hit tracks,
and appends them to the final tracks container given that two
conditions are met: (1) all three hits must not be flagged, and
(2) the least-squares fit χ2 of the track must be under a certain
threshold.

Additionally, a least-squares fit is calculated for every
accepted track, required for subsequent reconstruction algo-
rithms, and stored in an SOA container. The complexity of
the weak track filter is O(m2 · n).

IV. GPU SEQUENCE FRAMEWORK

We have developed an extensible GPU sequence frame-
work5 in order to perform parallel event reconstruction on
many-core architectures. Our framework utilizes CUDA to
offload computation to a GPU accelerator. We present here
the results of the Velo reconstruction, although an evolving
codebase is under development in order to accommodate the
entire first stage of the software trigger High Level Trigger 1.

Figure 4 depicts an architectural view of the framework.
Our framework reads simulated Monte Carlo events from input
binary files, which have been generated in the LHCb recon-
struction framework. Geometry descriptions of the detector are
also read in this fashion, and are kept constant throughout the
execution of the reconstruction sequence.

Control flow

Our framework is multi-threaded. Each of the CPU threads
employs one GPU stream to guarantee asynchronous execution
of events. A configurable number of events is executed in
parallel on every GPU stream. Since every event is physically
independent, no communication is required between CPU
threads or GPU streams.

The reconstruction of physics events is performed in a
sequence of algorithms executed on one CPU thread - GPU

5The GPU sequence framework and Search by triplet are available under
https://gitlab.cern.ch/dcampora/search by triplet, tag v1.0.

GPU sequence framework

Streams

Sequence

Handlers

Algorithms

Scheduler

Memory manager

Figure 4: A schematic of the GPU sequence framework.
Our software reads binary input files containing simulated
Monte Carlo events. Several GPU streams can be executed in
parallel, each of them with their own sequence of algorithms.
The memory required by every algorithm in the sequence is
managed by the scheduler, which employs a memory manager
with a predetermined memory availability.

stream pair. This sequence is configurable, and consists in
device-to-host and host-to-device data transmissions, as well
as data decoding and reconstruction algorithms. In order to
prevent execution stalls, all data transmissions are invoked
through their GPU stream. A pipeline is effectively created
when three or more thread-stream pairs are created, allowing
for concurrent two-way transmission and execution.

The sequence operates through handlers that encapsulate
algorithms. A handler provides a common façade to an ar-
bitrarily complex control-flow. Code repetition is avoided by
encapsulating common tools behind handlers for algorithms
such as prefix sum or sorting, that would otherwise require
explicitly instantiating various algorithms.

Data flow

In CUDA, dynamic memory allocation operations such as
cudaMalloc or cudaFree cannot be executed asynchronously,
and require all streams to synchronize. The data flow has been
developed to solve this central issue. We configure the amount
of data to be reserved for every thread-stream pair and allocate
it prior to launching the thread. An upper bound for the entire
algorithm sequence is therefore necessary, and is currently
obtained experimentally.

We have developed a memory manager that operates with
the allocated memory of the thread-stream. It keeps a view of
the memory in segments, and provides non-blocking malloc
and free implementations.

180 appendix a

Data dependencies are known a priori for each algorithm.
Upon configuring the sequence, the scheduler iterates the
dependencies and determines when arguments need to be
allocated or freed. Prior to the execution of every algorithm
in the sequence, the scheduler is invoked in order to prepare
the required arguments. The scheduler employs an instance
of the memory manager to achieve asynchronous memory
management.

V. CPU IMPLEMENTATION

We have translated our code to the Single Program Multiple
Data (SPMD) format employed by the Intel SPMD Program
Compiler [18] 6. This method allows our algorithm to be
executed on any available ISPC target CPU 7, while preserving
our algorithm design with minimal modifications, yielding the
exact same result as the GPU counterpart.

The resulting SPMD code is vectorized by the ISPC
compiler. The execution model of ISPC executes a gang of
program instances in parallel, using the vector units available
in a processor. The execution of every instruction is masked,
similarly to how a warp executes threads on a GPU. ISPC al-
lows compilation with a configurable execution mask size and
gang size. Additionally, the desired set of vector extensions8

can be configured.
Our CPU implementation is compatible with the Monte

Carlo events and geometry descriptions of the GPU sequence
framework. We have predefined the Velo sequence, with
the same set of algorithms as the many-core model. Events
are executed in parallel across different CPU threads via a
minimal multi-threading wrapper, while intra-event parallelism
is handled by ISPC assigning work to vector units. In order to
be able to rigorously compare both implementations, we have
avoided any usage of the C++ standard library for common
algorithms.

VI. PERFORMANCE ANALYSIS

We have carried out a performance analysis over a variety
of hardware, described in tables I and II. The CPUs under
analysis are from two different vendors, Intel and AMD.
The Skylake processor Silver 4114 supports the AVX512
instruction set, whereas the Broadwell and EPYC processor
only support AVX2. A dual-socket configuration for each
server has been tested, with two identical processors of each
kind.

The GPUs have different memory types, gaming cards have
GDDR5 whereas the scientific card Tesla V100 is equipped
with High Bandwidth Memory (HBM2). The 10-series gaming
cards implement the NVIDIA Pascal architecture, the scientific
card implements the Volta architecture, and the RTX 2080 Ti
implements the more recent Turing architecture. The CUDA

6Search by triplet SPMD is available under https://gitlab.cern.ch/dcampora/
search by triplet spmd, tag v1.0.

7At the time of writing, ISPC supports as targets: x86 with SSE2, x86-64,
ARM and NVIDIA PTX.

8The following vector extensions were tested: SSE2, SSE4, AVX, AVX2,
AVX512 (Skylake).

compute capability of either of the cards is enough to support
our implementation of Search by triplet. The memory of the
cards impacts the amount of streams and events that can be
executed concurrently.

Feature Intel Xeon Intel Xeon AMD
Broadwell E5-2630 Silver 4114 EPYC 7301

cores 20 20 16
Max freq. 3.1 GHz 3.0 GHz 2.7 GHz
Cache (L3) 25 MB 13.75 MiB 64 MiB
DRAM 64 GiB 64 GiB 64 GiB
SIMD AVX2 AVX512 AVX2
capability
MSRP 667 $ 694 $ 948 $

Table I: CPU hardware used for our tests. We compare a
Broadwell processor (Intel Xeon E5-2630), a Skylake proces-
sor (Intel Xeon Silver 4114) and an AMD processor.

Feature Geforce Geforce Geforce Tesla
GTX 1060 GTX 1080 Ti RTX 2080 Ti V100

cores 1280 3584 4352 5120
(CUDA) (CUDA) (CUDA) (CUDA)

Max freq. 1.81 GHz 1.67 GHz 1.545 GHz 1.37 GHz
Cache (L2) 1.5 MiB 2.75 MiB 6 MiB 6 MiB
DRAM 5.94 GiB 10.92 GiB 10.92 GiB 32 GiB

GDDR5 GDDR5 GDDR5 HBM2
CUDA 6.1 6.1 7.5 7.0
capability
MSRP 249 $ 699 $ 1199 $ 8899 $

Table II: GPU hardware used for our tests. We compare a
mid-class gaming graphics card (Geforce GTX 1060), two
high-end gaming graphics card (Geforce GTX 1080 Ti and
Geforce RTX 2080 Ti) and a scientific card (Tesla V100).

We employ a validation method based on well-established
metrics for our algorithm (cref. section II). We obtain a
deterministic result across all devices. The use of Monte Carlo
data for validation is the standard for validating reconstruction
algorithms. The presented results have been validated to pro-
duce acceptable physics performance.

We run a configurable number of events s for a number
of repetitions r. In each repetition, event data submission
and retrieval are performed. The amount of streams t is also
configurable. We measure the performance of our sequence by
using external counters. We obtain the wall clock execution
time, and factor in the number of events that have been
processed. Our framework presents the performance of a run
as the number of events executed per unit of time, measured
as frequency (Hz).

Search by triplet presents several free parameters that alter
the computing performance. Each of the discussed algorithms
are encapsulated in one CUDA kernel, and can be tweaked
with respect to the number of blocks and number of threads
on each invocation. We have identified, by using local search,
the parameter values that provide best performance for the
entire sequence, and the resulting configuration is shown
in table III. Even though individual kernels may be faster
under other configurations, these values empirically showed

appendix a 181

the best performance-to-resource-usage ratio, resulting in a
more efficient CUDA scheduler resource assignment. We have
found this configuration to provide best performance across all
tested devices.

Kernel # blocks # threads
sort by phi # events in execution 64
find candidate windows {# events in execution, 128

Velo middle modules}
track seeding and # events in execution 32
track forwarding
weak track filter # events in execution 256

Table III: Best configuration found in local search for each
CUDA kernel. We have optimized our configurations min-
imizing the overall wall clock execution time. Individual
algorithms may get faster with different configurations, but the
effect on the overall performance is also impacted by resource
usage, since other concurrent streams may be blocked.

The configuration of Search by triplet SPMD has also been
tweaked for each of the CPUs under consideration. A mask
of 32 bits was found to yield the best performance for all
processors. This is to be expected, as the ISPC guidelines state
the mask should have a length of the most used datatypes,
which are 32-bit types in our algorithm. The gang size and
vector extension has also been tested, and table IV depicts
the optimal configurations found for each processor. In the
AMD processor, the preferred vector extension and gang size
were AVX1 and four, in contrast with the Intel Broadwell
processor, which could be due to the differing number of ports
and functional units available on both processors.

Processor Vector extension Mask size Gang size
Intel Xeon AVX2 32 8
Broadwell E5-2630
Intel Xeon AVX512 32 16
Silver 4114
AMD AVX1 32 4
EPYC 7301

Table IV: Best configuration for Search by triplet SPMD for
each processor. Both Intel processors benefit from their latest
available instruction set. The AMD processor benefits from an
AVX1 configuration with a gang size of 4, despite supporting
AVX2. This could be due to particularities involving the
number of ports and functional units of the processor.

The peak performance configuration achieved with every
processor is compared in Figure 5. The AMD EPYC processor
underperforms when compared to its other CPU competitors.
The AVX512 vector extensions in the Skylake processor show
a discrete 6% performance speedup over the AVX2 Broadwell
processor. Even though our CPU solution is vectorized and
utilizes all available threads, all of the tested high-end and
scientific GPUs outperform the CPUs in consideration.

The mid-class Geforce GTX 1060 yields a similar per-
formance to the Intel processors under analysis. The pro-
jected speedup between the Geforce GTX 1060 and the

0

1

2

3

4

5

6

Sp
ee

du
p

(ti
m

es
)

1.00 1.22 1.25 1.29

2.71

5.23
5.69

2x AMD EPYC 7301
2x Intel Xeon Broadwell E5-2630
Geforce GTX 1060
2x Intel Xeon Silver 4114

Geforce GTX 1080 Ti
Geforce RTX 2080 Ti
Tesla V100

Figure 5: Speedup between the three CPU and the four GPUs
under consideration. For each CPU, the performance of a dual-
socket server, with the Search by triplet SPMD algorithm with
their best ISPC configuration is shown. For each GPU, the
performance of Search by triplet within the GPU sequence
framework with their best parameter configuration is shown.
CPUs underperform compared to GPUs. The performance
scales to higher-end GPU devices.

Geforce GTX 1080 Ti according to their number of cores and
maximum frequency is 2.58×, even though this does not take
into consideration cache size or base frequency. We observe
a speedup of 2.41×, showing our algorithm scales to higher-
end architectures. We attribute the difference in performance
across the two high-end gaming cards Geforce GTX 1080 Ti
and Geforce RTX 2080 Ti to be a combined effect of both
the increase in CUDA cores and in L2 cache, since we
observe a 1.93× speedup between them. The scientific card
tops our speedup chart showing only a 9% speedup over the
Geforce RTX 2080 Ti, despite being an older architecture.
When factoring in the MSRP of the devices under considera-
tion, the mid-class Geforce GTX 1060 becomes the graphics
card that delivers the best price-performance ratio. The scien-
tific card Tesla V100 delivers a worse price-performance than
the gaming cards, due to its high MSRP.

In order to understand the impact of our work in the field,
we can compare the performance obtained with the current
LHCb baseline implementation [22]. Our SPMD implemen-
tation presents a speedup of 1.46× over the LHCb base-
line, under the same hardware configuration of a dual-socket
Intel Xeon Broadwell E5-2630. The Geforce RTX 2080 Ti
presents a speedup of 6.23×, and the Tesla V100 a speedup
of 6.77× when compared to the baseline results. We ac-
knowledge the physics quality of the results are not identical
between the baseline and our implementation, and that the

182 appendix a

LHCb codebase is in active development and its performance
has improved since. Nevertheless, we attribute the presented
speedup to the combined impact of data structures, locality
and vectorization of our algorithm design.

Figure 6 shows a breakdown of the contribution of each
algorithm to the overall timing of the Velo track reconstruction.
We observe our sequence is dominated by track seeding and
track forwarding, as was to be expected from the computa-
tional complexity analysis. The weak track filter time fraction
is negligible, since it operates in a small subset of leftover
3-hit tracks.

0 10 20 30 40 50 60 70 80
Fraction of Velo tracking sequence (%)

track seeding and
track forwarding

sort by phi

find candidate windows

weak track filter

80.14

10.37

8.56

0.93

Figure 6: The contribution of each algorithm to the timing of
the sequence is shown. Track seeding and track forwarding
compose a single kernel and are therefore shown together.
The track reconstruction sequence is dominated by track
seeding and track forwarding, as would be expected from the
complexity analysis.

A. GPU sequence results

A percentual comparison of profiled sequence execution and
memory transmission data is shown in Figure 7. The sequence
execution dominates the time distribution of the GPU. Given
that we have created an effective asynchronous pipeline,
memory submissions and memory retrievals are hidden behind
the execution time of our sequence.

Figure 8 depicts two parameter scans for number of events s
and number of streams t, respectively. A configuration of
s = 4096, t = 3 turns out to be effective on all tested
hardware. The Geforce GTX 1060 only requires two streams
to achieve an effective pipeline. We attribute this to the lower
amount of streaming multiprocessors on that device, which
permits achieving a high occupancy with one stream, hiding
the transmissions on the other concurrent stream. A higher
number of streams does not increase the throughput. This
fact, together with the scaled performance to high-end devices,
indicate our software is compute bound.

VII. CONCLUSION

We have presented Search by triplet, a new algorithm to
efficiently perform track reconstruction on parallel architec-
tures. Our algorithm takes inspiration from track forwarding

0 20 40 60 80 100
Fraction of sequence pipeline (%)

sequence

device to host

host to device

100.00

21.80

12.76

Figure 7: Pipeline of Velo tracking sequence in the GPU
sequence framework. The timings of the pipeline were ob-
tained by the nvprof command in a full sequence execution.
The pipeline is dominated by code execution by a 78.20%
margin. The transmissions will be hidden if enough streams
are running asynchronously.

techniques. We have designed our algorithm removing RAW
dependencies and revisiting detector modules in subsequent
steps to maximize temporal and spatial locality. We have
discussed worst-case complexity for each of its constituent
parts. We have developed our algorithm in CUDA and we have
optimized the launch parameter configurations. The algorithm
has been validated against Monte Carlo simulated data.

We have presented Search by triplet SPMD, an SPMD
realization of our algorithm geared towards parallel SIMD
processors. We have carried over the design of our algorithm
to CPUs, and we have optimized our compilation options for
each of the processors under consideration.

We have compared the performance of our algorithm across
a variety of parallel architectures. Our algorithm benefits
from larger vector widths on Intel processors, and scales
to high-end GPU architectures. The algorithm performs the
Velo track reconstruction with a throughput of 57.36 kHz
(AMD EPYC 7301) through 74.17 kHz (Intel Xeon Sil-
ver 4114) on CPUs, and 71.75 kHz (Geforce GTX 1060)
through 326 kHz (Tesla V100) on the GPUs under consid-
eration.

We have assessed the impact of our algorithm design
decisions by comparing the performance of our SPMD imple-
mentation with the LHCb baseline implementation. We obtain
a 1.46× speedup with respect to the baseline implementation
running on the same hardware. We acknowledge this codebase
is in active development, and a dedicated study comparing
track reconstruction approaches should be pursued.

We have also presented a new framework to perform
physics reconstruction on many-core architectures GPU se-
quence framework. We have encapsulated our software into
this framework. We have performed a parameter scan over the
configurable number of events and streams of our application.
An effective pipeline has been created under all studied devices

appendix a 183

1 4 16 64 256 1024 4096 16384
Number of events

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut

Geforce GTX 1060
Geforce GTX 1080 Ti

Geforce RTX 2080 Ti
Tesla V100

(a)

2 4 6 8 10 12 14
Number of streams

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut

(b)

Figure 8: Two parameter scans are shown for the GPU
sequence framework application. (a) The number of events
parameter is scanned for all devices under consideration. The
configuration used throughout all measurements is t = 3 and
r = 200. Performance caps with 1024 events for Geforce cards
and 2048 events for the Tesla card. (b) A scan of the number of
streams is depicted, with configuration s = 4096 and r = 200.
The Geforce GTX 1060 requires only 2 streams to achieve an
effective pipeline, in contrast with the 3 streams required by
the other cards. The memory capacity of each device limits the
maximum number of concurrent streams under the tested con-
figuration. The peak performances for the Geforce GTX 1060,
Geforce GTX 1080 Ti, Geforce RTX 2080 Ti and Tesla V100
are 71.75, 155.33, 299.94 and 326.26 kHz respectively.

that hides transmission times. We have profiled the algorithms
that conform our Velo reconstruction implementation, and
we have identified the main time consumers. Our framework

employs a custom memory manager to allocate and free
memory segments as required in an asynchronous manner.

Our track reconstruction algorithm is an indication that
other LHCb subdetectors may be amenable to be reconstructed
efficiently on many-core architectures. We have shown a trans-
lation of our GPU algorithm performs adequately on CPUs,
while maintaining the same SIMD-oriented design choices. We
will study the applicability of our design to other subdetector-
specific geometries and conditions.

Our framework can be extended with additional reconstruc-
tion algorithms. We intend to do a detailed cost-analysis of our
application for the upcoming LHCb upgrade. The performance
of our application will be a determining factor to adopt GPUs
in LHCb’s trigger server farm.

ACKNOWLEDGMENT

The authors would like to thank D. vom Bruch for fruitful
discussions and code reviews. Thanks to V. Gligorov for
his guidance and support, and to P. Fernández Declara for
framework discussions. Thanks to C. Potterat and M. Rangel
for early discussions on the development of the first prototype
of Search by triplet. Thanks to D. Rohr for ideas for obtaining
better performance, and to R. Quagliani for continuous discus-
sions to improve the physics performance. We would also like
to thank the LHCb computing and simulation teams for their
support and for producing the simulated LHCb samples used
to develop and benchmark our algorithm.

184 appendix a

REFERENCES

[1] The LHCb Collaboration, “LHCb detector performance,” International
Journal of Modern Physics A, vol. 30, no. 07, p. 1530022, mar
2015. [Online]. Available: https://www.worldscientific.com/doi/abs/10.
1142/S0217751X15300227

[2] ——, “Framework TDR for the LHCb Upgrade: Technical Design
Report,” Tech. Rep. CERN-LHCC-2012-007. LHCb-TDR-12, Apr.
2012. [Online]. Available: https://cds.cern.ch/record/1443882

[3] ——, “LHCb Trigger and Online Upgrade Technical Design Report,”
Tech. Rep. CERN-LHCC-2014-016. LHCB-TDR-016, May 2014.
[Online]. Available: https://cds.cern.ch/record/1701361

[4] D. Rohr, S. Gorbunov, and V. Lindenstruth, “GPU-accelerated track
reconstruction in the ALICE High Level Trigger,” J. Phys. Conf. Ser.,
vol. 898, no. 3, p. 032030, 2017.

[5] P. Sen and V. Singhal, “Event selection for much of cbm experiment
using gpu computing,” in 2015 Annual IEEE India Conference (INDI-
CON), Dec 2015, pp. 1–5.

[6] D. vom Bruch, “Online Data Reduction using Track and
Vertex Reconstruction on GPUs for the Mu3e Experiment,”
EPJ Web of Confernces, vol. 150, no. 00013, 2017.
[Online]. Available: https://www.epj-conferences.org/articles/epjconf/
pdf/2017/19/epjconf ctdw2017 00013.pdf

[7] The LHCb Collaboration, “LHCb VELO Upgrade Technical Design
Report,” Tech. Rep. CERN-LHCC-2013-021. LHCB-TDR-013, Nov
2013. [Online]. Available: http://cds.cern.ch/record/1624070

[8] O. Callot, “FastVelo, a fast and efficient pattern recognition package
for the Velo,” CERN, Geneva, Tech. Rep. LHCb-PUB-2011-001.
CERN-LHCb-PUB-2011-001, Jan 2011, lHCb. [Online]. Available:
http://cds.cern.ch/record/1322644

[9] D. Funke, T. Hauth, V. Innocente, G. Quast, P. Sanders,
and D. Schieferdecker, “Parallel track reconstruction in CMS
using the cellular automaton approach,” Journal of Physics:
Conference Series, vol. 513, no. 5, p. 052010, jun 2014.
[Online]. Available: http://stacks.iop.org/1742-6596/513/i=5/a=052010?
key=crossref.85cff4ebb76ffe912b706a3d23b5f608

[10] R. E. Kálmán, “A New Approach to Linear Filtering and Prediction
Problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45,
Mar. 1960. [Online]. Available: http://dx.doi.org/10.1115/1.3662552

[11] D. H. Cámpora Pérez and O. Awile, “An efficient low rank kalman filter
for modern simd architectures,” Concurrency and Computation: Practice
and Experience, vol. e4483, 2018.

[12] R. H. C. Lopes, I. D. Reid, and P. R. Hobson, “A well-
separated pairs decomposition algorithm for k-d trees implemented
on multi-core architectures,” Journal of Physics: Conference Series,
vol. 513, no. 5, p. 052011, jun 2014. [Online]. Available: https:
//doi.org/10.1088%2F1742-6596%2F513%2F5%2F052011

[13] C. Cheshkov, “Fast hough-transform track reconstruction for the alice
tpc,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 566, no. 1, pp. 35 – 39, 2006, tIME 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168900206008059

[14] L.-B. Niu, Y.-L. Li, M. Huang, B. He, and Y.-J. Li,
“Track reconstruction based on Hough-transform for nTPC,”
Chinese Physics C, vol. 38, no. 12, p. 126201, dec 2014.
[Online]. Available: http://stacks.iop.org/1674-1137/38/i=12/a=126201?
key=crossref.04ab3117f629b4f1118b49f222f1d94c

[15] A. Abba, F. Bedeschi, F. Caponio, R. Cenci, M. Citterio, A. Cusimano,
J. Fu, A. Geraci, M. Grizzuti, N. Lusardi, P. Marino, M. Morello,
N. Neri, D. Ninci, M. Petruzzo, A. Piucci, G. Punzi, L. Ristori,
F. Spinella, S. Stracka, D. Tonelli, and J. Walsh, “An “artificial retina”
processor for track reconstruction at the full lhc crossing rate,” Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 824, pp. 260
– 262, 2016, frontier Detectors for Frontier Physics: Proceedings of
the 13th Pisa Meeting on Advanced Detectors. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168900215012607

[16] A. Glazov, I. Kisel, E. Konotopskaya, and G. Ososkov, “Filtering tracks
in discrete detectors using a cellular automaton,” Nucl. Instr. and Meth.,
vol. A329, pp. 262–268, 1993.

[17] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, March 2008.

[18] Intel, “Intel spmd program compiler.” [Online]. Available: https:
//ispc.github.io/

[19] R. Aaij et al., “Performance of the LHCb Vertex Locator. Performance
of the LHCb Vertex Locator,” JINST, vol. 9, no. CERN-LHCB-
DP-2014-001. CERN-LHCB-DP-2014-001. LHCB-DP-2014-001, p.
P09007. 61 p, May 2014, comments: 61 pages, 33 figures. [Online].
Available: http://cds.cern.ch/record/1707015

[20] M. Schiller, “Track reconstruction and prompt k0S production at the
LHCb experiment,” Dissertation,, University of Heidelberg,, 2011.

[21] G. M. Amdahl, “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities,” in Proceedings of the
April 18-20, 1967, Spring Joint Computer Conference, ser. AFIPS ’67
(Spring). New York, NY, USA: ACM, 1967, pp. 483–485. [Online].
Available: http://doi.acm.org/10.1145/1465482.1465560

[22] M. De Cian, A. Dziurda, V. Gligorov, C. Hasse, W. Hulsbergen, T. E.
Latham, S. Ponce, R. Quagliani, H. F. Schreiner, S. B. Stemmle,
J. Van Tilburg, M. J. Zdybal, and J. M. Williams, “Status of
HLT1 sequence and path towards 30 MHz,” CERN, Geneva, Tech.
Rep. LHCb-PUB-2018-003. CERN-LHCb-PUB-2018-003, Mar 2018.
[Online]. Available: http://cds.cern.ch/record/2309972

appendix a 185

B
A N E F F I C I E N T L O W- R A N K K A L M A N F I LT E R
F O R M O D E R N S I M D A R C H I T E C T U R E S

187

An Efficient Low-Rank Kalman Filter for Modern SIMDArchitectures
Daniel Hugo Cámpora Pérez1,2 | Omar Awile1
1CERN, CH-1211 Geneva 23, Geneva,
Switzerland

2Universidad de Sevilla, C/San Fernando, 4,
C.P. 41004, Sevilla, Spain
Correspondence
Daniel Hugo Cámpora Pérez,
CERN, CH-1211 Geneva 23,
Geneva, Switzerland.
Email: dcampora@cern.ch
Present Address
Daniel Hugo Cámpora Pérez,
CERN, CH-1211 Geneva 23,
Geneva, Switzerland.

Summary
The Kalman filter is a fundamental process in the reconstruction of particle collisions in high-
energy physics detectors. At the LHCb detector in the Large Hadron Collider this reconstruction
happens at an average rate of 30 million times per second. Due to iterative enhancements in
the detector’s technology, together with the projected removal of the hardware filter, the rate
of particles that will need to be processed in software in real-time is expected to increase in the
coming years by a factor 40. In order to cope with the projected data rate, processing and filtering
software must be adapted to take into account cutting-edge hardware technologies.
We present Cross Kalman, a cross-architecture Kalman filter optimized for low-rank problems
and SIMD architectures. We explore multi and many-core architectures, and compare their per-
formance on single and double precision configurations. We show that under the constraints of
our mathematical formulation, we saturate the architectures under study. We validate our results
and integrate our filter in the LHCb framework.
Our work will allow to better use the available resources at the LHCb experiment and enables us
to evaluate other computing platforms for future hardware upgrades. Finally, we expect that the
presented algorithm and data structures can be easily adapted to other applications of low-rank
Kalman filters.
KEYWORDS:
Kalman filter, data-intensive parallel algorithms, numerical methods

1 INTRODUCTION
The LHCb detector at CERN will be upgraded in 2020 1 to acquire data at an estimated rate of 30 MHz, requiring to process a data throughput of
40 Tbit/s. At the same time the first stage of filtering in the Data Acquisition process, also known as hardware level trigger, will be discontinued
in favor of a full software trigger 2. Consequently the throughput that the software level trigger will need to sustain in order to maintain a steady
triggering rate will dramatically increase, due to both the increase in rate of events processed in software, and the influx of larger events.

To be able to cope with the increased data rate, several hardware architectures are currently under consideration. While the current LHCb
software trigger farm is composed solely of Intel Xeon processors, in the last few years many High Performance Computing sites are adopting
other alternative hardware architectures, such as ARM 64, IBM Power X, FPGAs, or many-core architectures such as GPGPUs or Intel Xeon Phi.
This has raised the question within the High Energy Physics community whether these architectures are also suitable for performing the software
trigger in a sustainable way. To answer this question, performance, economical, power consumption and software maintainability aspects need to
be taken into account.

In this work we will consider the Kalman filter component used in the LHCb software framework. The Kalman filter is a linear quadratic esti-
mator, first introduced by Rudolf E. Kálmán in 1960 3, that has been extensively used to estimate trajectories in various systems 4 5. In its discrete

188 appendix b

implementation 6, it consists in a predict stage where the state of the system is projected according to a given model, and an update stage where
the state is adjusted taking into account a measurement. In particular we consider here a filter that is low-rank.

In LHCb the Kalman filter is applied to estimate particle trajectories (tracks) as they travel through the particle detector 7. Tens of millions of
collisions per second occur in the detector, each requiring tens of thousands of filter computations. The Kalman filter is therefore the single largest
time contributor in the LHCb software chain, taking about 60% of the first stage software trigger reconstruction time.

In the LHCb experiment, many particles travel through the detector simultaneously and independently. Taking into account the scale of the
problem, our Kalman filter can be considered a petascale embarrasingly parallel problem.

In contrast to the work by G. Cerati et al. 8, we do not use our Kalman filter for track finding, but instead, we filter fully built tracks. That allows us
to take into account the number of tracks and nodes when envisioning a scheduling strategy, resulting in an effective use of the SIMD capabilities
of the processors under study. The execution conditions of our use-case diverge significantly from those in the works by Lin et al. 9 and Lu et al. 10
in that we are presented with a known workload and we do not require to schedule in real time.

Huang et al. 11 show results on aGPU implementation of Kalman filterswith an increasing observation dimension.Nevertheless, we are interested
in a slightly different implementation in some cases, and our observation dimension is very small compared to theirs, making their solution unsuitable
for our use-case.

Here we extend over previously presented results 12 13. We describe in detail our methodology and the integration of our proto-application
into the LHCb framework. We have updated our results, explored new architectures and evaluated their cost-effectiveness. Additionally, we have
analyzed the performance impact of using single precision floating-point numbers on a variety of SIMD architectures, includingmulti andmany-core
architectures.

We explore performance gains over the current LHCb particle reconstruction software 14, and compare the speedup obtained over a variety of
architectures. Additionally, we validate our implementation and integrate it back in the LHCb reconstruction framework, observing a performance
gain on existing hardware.

Our work has a direct impact on the current reconstruction process of LHCb, as it improves the throughput of the Kalman filter sequences.
It also enables us to evaluate the existing architectures in regards to the upcoming upgrade of the servers, without the requirement of porting a
framework composed of millions of lines of code.

2 CROSS KALMAN
In LHCb track reconstruction a particle trajectory consists of signal nodes originating from detector signals. Additionally, virtual reference nodes are
placed in concrete positions to determine the track parameters up-front for later reconstruction stages. As opposed to signal nodes, reference
nodes trigger a prediction with no update in the Kalman filter.

For a given particle trajectory, the Kalman filter is applied twice: First, a fit in the forward direction, positive in the Z axis, is followed by a fit in
the backward direction, processing the nodes in reverse order. Afterwards, a smoothed state is calculated averaging both states. The quality of the
smoothed states of a track will determine its acceptance in the track reconstruction process.

The calculation of smoothed states requires having processed the forward and backward fit before. For a given particle track, in order to
calculate the leftmost smoothed state we would require the first forward state and the last backward state. Furthermore, the rightmost smoothed
state would require the last forward state and the first backward state. Thus, this introduces a dependency between the stages with little room
for parallelization. However, a particle collision generates many independent particles that can be reconstructed at the same time, allowing us to
envision a horizontally parallel scheme.

For either direction, the first encountered signal node does not have any preceding signal data. Reference parameters according to their position
are generated and fed onto those nodes, and the prediction is applied to these parameters. Figure 1 shows two particles traversing the LHCb
detector with various nodes. When performing the forward fit, the top particle carries out three predictions from reference parameters before
doing the first update. From that point on, all states are predicted from previous states, however only signal nodes trigger an update. The particle
at the bottom performs a single prediction from reference parameters, given the first node is a signal node.

Furthermore, given a node, the resulting state is calculated as the average between its forward updated state and its backward predicted state.
However, if the node has no preceding signal node in one of the directions, the smoother copies the updated state of the other direction.

Given this problem formulation, we describe the design of our algorithm in the following parts: the control flow, the data structures and an
efficient implementation for performing the math computations.

appendix b 189

Vertex
Locator TT

RICH 1

Magnet T stations

Reference node

Signal node

FIGURE 1 Schematic of two particles (blue) traversing LHCb subdetectors. A particle collision is indicated by the two red arrows meeting in the
center of the Vertex Locator subdetector. Particles produced from the collision traverse tracking subdetectors; here the Vertex Locator, TT and T1,
T2 and T3 stations are depicted. A magnet bends the trajectory of produced particles according to their momentum and charge.

2.1 Control Flow
Since the control path of processing a particle trajectory diverges depending on the nature of its nodes, we have divided each particle trajectory in
three stages: pre, main and post (see Figure 2 for an overview). pre is the forward trajectory from the first node until a signal node is encountered,
inclusive. Similarly, post is the backward trajectory from the last node until a signal node is encountered, inclusive. Finally, main includes the
remaining nodes. The forward fit processing logic differs between pre and main, while for the backward fit processing logic differs between post

and main.

pre main post

pre main post

forward fit

backward fit

predict
update first signal

predict
update

predict
update

predict
update first signal

smoother

predict

update

predict
update

smooth
states

pre post
copy state copy state

FIGURE 2 Flowchart of our application. Tracks are divided in three stages, according to the location of reference and signal hits. In order to process
all tracks, three static schedules are generated, pre, main and post. The dependencies between stages are shown, alongside the subprocesses on
each stage.

A single particle trajectory would be processed as follows: First, pre, main and post stages would be identified. Then, all nodes in the pre stage
would be processed in order, followed by main and post. The first node in the backward direction requires a starting state that can optionally be
fed from the last forward state, hence the optional requirement that backward processing start after forward processing. The nodes would then be

190 appendix b

processed in reverse order, starting from the post stage, followed by main and pre. Finally, the smoothed states can be calculated in no particular
order.

In order to fully exploit the capabilities of SIMD architectures, we employ a static scheduler that assigns node calculations to SIMD lanes. Since
the execution of nodes from different particles is independent, we execute them in a horizontally parallel (data parallel) scheme. In order tominimize
branches and guarantee instruction locality, we generate three such schedules, one for each stage.

The amount of nodes processable at a time depends directly on the SIMD width of the processor. Hence our scheduler accepts a configurable
vector width. It is also able to detect at compile time the supported vector width of the platform. There are no restrictions on the width of the
lane, allowing this design to also target many-core architectures, where wider vector units are available.

More formally, givenm particle trajectories with ni nodes each and k processors, we want to assign nodes to processors minimizing the number
of compute iterations. This problem is a variant of the number partitioning problem Npp 15, which is known to be NP-complete. Our scheduling
algorithm orders the trajectories in descending order of nodes, and assigns nodes to processors following a Decreasing-Time Algorithm (DTA).

The same schedule can be used for the forward fit, the backward fit, and the smoother. The forward and backward dependencies between node
calculations are naturally resolved by traversing the schedule in the respective direction (cf. Figure 2). All tracks are processed on each stage prior
to processing the next one. The smoother pre and post stages are processed after completion of the backward fit.

In our implementation we place particular emphasis on avoiding as much as possible memory copy operations and exploiting memory locality.
We reuse data structures throughout the schedule iterations replacing only necessary data portions when required to do so.

Additionally, the data structures must be aligned and refer relatively to the same nodes in order for the smoother to be able to produce an
average state from the previously calculated forward and backward states. Using our scheduler this requirement is trivially met.

Figure 3 depicts 10 iterations computed with the described scheduler, with vector width set to four. The last column denotes the particle-node
being processed at the moment. This schedule can be iterated forwards or backwards, maintaining the sequentiality enforced by the Kalman filter
process. Due to its flexible design, execution can be optimized on multi and many-core SIMD architectures, with varying vector widths.

it in out act vector (#particle-#node)

#540: 0000 0001 1111 { 112-9 80-11 81-11 113-10 }

#541: 0001 1110 1111 { 112-10 80-12 81-12 79-3 }

#542: 1110 0000 1111 { 107-2 109-1 108-2 79-4 }

#543: 0000 0000 1111 { 107-3 109-2 108-3 79-5 }

#544: 0000 0000 1111 { 107-4 109-3 108-4 79-6 }

#545: 0000 0000 1111 { 107-5 109-4 108-5 79-7 }

#546: 0000 0000 1111 { 107-6 109-5 108-6 79-8 }

#547: 0000 0000 1111 { 107-7 109-6 108-7 79-9 }

#548: 0000 0000 1111 { 107-8 109-7 108-8 79-10 }

#549: 0000 0000 1111 { 107-9 109-8 108-9 79-11 }

FIGURE 3 Main scheduler iterations. The first column shows the iteration number. The second and third show the input and output mask, used
to notify a change of particle. The fourth column is the action mask. The last column shows the nodes being processed in parallel. The scheduler
was run with a vector width of four.

2.2 Data Structures
The algorithm’s main data structure is composed of three parts. A hardware-specific data backend stores data contiguously and aligned to the
required SIMD width, and provides chunks of requested data agnostic to their contents. In order to avoid a performance impact of memory
allocations of big chunks of contiguous space, data backends are created on demand and can store a configurable number of elements. Iterators
point to the data backends and are configured with a structure size. We provide forward and reverse iterators in order to traverse the data as
required.

We use Arrays of Structures of Arrays (AOSOA) as data views over the data backends. This kind of data structures benefit from locality when
accessing any of their elements, and have been shown toworkwell with SIMDprocessors 16. Further locality is preserved by storing these structures
next to each other contiguously. Figure 4 depicts one such data view used for calculating the fits. For each node, it consists of a state composed
of a parametric description of the trajectory (x, y, tx, ty) and its charge over its momentum q

p
, a covariance matrix and a χ2 goodness of fit value.

appendix b 191

For a single particle position, the state is a five-element vector (x y tx ty q
p

), while the covariance σ is a 15-element matrix (5 × 5 symmetric
matrix), and the χ2 is a single scalar value. This structure is used to calculate the predicted and updated state. We store the resulting updated state
of each node, and therefore such an AOSOA structure is generated for each node and fit direction. In order to perform the smoother we require
the forward updated and backward predicted states, and hence this is computed inline prior to overwriting it with the updated state.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x0 x1 x2 x3

y0 y1 y2 y3

tx0 tx1 tx2 tx3

ty0 ty1 ty2 ty3
q

p 0

q

p 1

q

p 2

q

p 3

σ0,0 σ1,0 σ2,0 σ3,0...
σ0,14 σ1,14 σ2,14 σ3,14

χ2
0 χ2

1 χ2
2 χ2

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

FIGURE 4 AOSOA data structure for scheduler with width four.

2.3 Efficient Vector Implementation
In order to test the proposed algorithm and data structures in section 2 we have implemented the core routines of the fit and smoother algorithms
in a proto-application, Cross Kalman. By implementing the algorithm outside LHCb’s analysis framework, Gaudi 17, we were free to test a number
of choices both in programming model and SIMD framework. We focus particularly on manual vectorization with the help of vector intrinsics
libraries, namely VCL 18, UMESIMD 19. For parallelizing across CPU cores we use the Thread Building Blocks (TBB) library. Based on our initial
implementation we have performed several iterations of fine-grained code optimizations . We tested several formulations, unrolling loops, inlining
functions, changing compiler options and reordering of the code. Furthermore, we implemented the arithmetic backend of our application in an
even more compact synthetic benchmark, Cross Kalman Mathtest. This allowed us to port our implementation to the language extensions OpenCL
and CUDA allowing us to compare performance and scalability across a large number of hardware platforms (cf. section 3). Finally, we provide a
scalar implementation as fall back, which can run on architectures not supporting vectorization.

3 RESULTS
Using the Cross Kalman1 and Cross Kalman Mathtest2 applications we are able to benchmark our proposed algorithm’s performance and parallel
scalability on a variaty of hardware platforms including traditional multi-core platforms, many-core processors as well as GPGPUs. In the following
we outline the conditions under which we have performed the various computer experiments and benchmarks presented below:

• All our benchmark applications except for the CUDA and OpenCL kernels were compiled with the gcc 6.x compiler and -O2

-march=native compiler options.
• All the systems under test were equipped with DDR4 RAM. The Intel Xeon Phi platform is also equipped with MCDRAM.
• Version v1.3.1 of Cross Kalman was used for obtaining the results shown here.
• For Cross Kalman, we generated synthetic events out of an unbiased sample of 72 events generated using LHCb’s Monte Carlo simulator.

Each event is scheduled to be processed by a TBB thread, emulating the behavior of the full application.
• For Cross Kalman Mathtest, we generated 223 synthetic events, and cross-checked the result across architectures with a checksum.
1https://gitlab.cern.ch/dcampora/cross_kalman2https://gitlab.cern.ch/dcampora/cross_kalman_mathtest

192 appendix b

• On Non-Uniform Memory Access (NUMA) platforms we spawn one process per domain with as many TBB threads as logical cores pinned
to its memory.

• Using the simulated data we were able to validate our results against the results from the original algorithm as implemented in the LHCb
production code.

• We performed all benchmarks in both double and single precision.
• All hardware platforms were configured to be in performance power mode and Turbo Boost available when possible.
• The Intel Xeon Phi Knights Landing platform was run in quadrant and flat memory mode, pinning all threads to MCDRAM.
• The figure of merit is the average throughput, calculated as #fits/time.

3.1 Cross Kalman results
Figure 5 shows a comparison between the architectures under study for the Cross Kalman use case. The leftmost bar in (a) shows the performance
of the scalar implementation of the fit, obtained from the timings reported by the framework on a representative node of LHCb’s computing farm.
Our Cross Kalman implementation outperforms the scalar implementation on the same hardware platform by a factor of 3.03x. ThunderX shows
the poorest performance of the architectures under study. Even though a speedup of 1.75x over the scalar implementation on E5-2630 v3 is
observed, this is only due to optimizations in the software. When both architectures run Cross Kalman, the E5-2630 v3 outperforms ThunderX by
1.73x. This is likely due to a comparatively lower peak DRAM bandwidth and peak floating point performance on ThunderX.

The transition from Haswell (v3) to Broadwell (v4) makes the E5-2630 processor 1.20x faster. We believe this is the combined effect of an
increase in the core count from 8 to 10, a proportional increase in cache size and an increase in streaming memory bandwidth, that we measured
in 52.0 to 55.3 GB/s. As we will see in the roofline model in Figure 9 our application is memory bound, and therefore these changes have a direct
impact in the performance we observe. Accordingly, the Xeon Phi processor outperforms all the other processors when configured with the high
bandwidth MCDRAM.

A price performance plot is shown in (b). Intel Xeon Phi outperforms the rest of the competitors, rendering it the most competitive from a
price / throughput standpoint. It is 33% cheaper than our Broadwell system, and 27% cheaper than AMD’s EPYC 7351 for the Cross Kalman use
case.

A throughput scaling plot for all architectures is shown in Figure 6 a. The processor that shows less performance degradation up to using all
of its cores is ThunderX. On the IBM Power8 architecture, depicted in yellow, we are able to scale linearly while no Simultaneous MultiThreads
(SMTs) are being used. Using 2 SMTs per processor, a performance improvement of 32% is observed. Moving from 2 to 4, a further 15% is gained,
while moving from 4 to 8 no performance benefit is observed.

On the Intel architectures we observe an almost linear scaling until we reach the limit of physical cores. The Intel Xeon Phi processor shows
a 27% gain from using 2 HyperThreads, and a further 9% from using 4. We do not obtain any gain from HyperThreads on other Intel processors,
which we attribute to the higher bandwidth of MCDRAM on Intel Xeon Phi.

Figures 6 b and 6 c show speedup and parallel efficiency graphs, respectively. All Xeon processors diverge from perfect scaling before the
other processors under study. Xeon Phi and ThunderX show performance gains using all of their available processors, with a speedup of 74.98x
and 64.88x respectively. For PowerNV, its optimal configuration is reached when configured with 96 processors (24.44x), where the performance
flattens out. Enabling HTs on the Xeon processors generates overhead and degrades performance. As expected on all tested hardware platforms,
parallel efficiency is significantly degraded when using SMT. PowerNV shows a parallel efficiency of 1.0 until it starts using additional SMTs. We
observe a similarly abrupt decrease in parallel efficiency in Xeon Phi when using additional HTs. The Xeon processors efficiency drop even without
HTs. With all their physical cores active, we see 40-45% efficiency, which could be due to the memory requirements of the application.

3.2 Synthetic benchmark results
Figure 7 shows the throughput of the fit and smoother as the vector width is increased. In order to obtain the results of these figures, we used
our synthetic benchmark, that allows us to execute the bulk of the computation of the application in a portable and generic way. The tests were
compiled against the UMESIMD library. This library conveniently allows for scalar emulated vectorized execution, although with a performance
penalty.

In the double precision fit, we observe a 1.44x speedup when increasing the vector width from 128 to 256 bits, and 1.43x from 256 to 512 bits.
On the other hand, the double precision smoother experiences 1.46x and 1.61x respectively. We attribute the better scaling of the smoother to its

appendix b 193

Scalar performance
2x Intel Xeon® CPU E5-2630 v3
Cavium ThunderX Dual 48 Core (ARM64)
2x Intel Xeon® CPU E5-2630 v3 (1334 $)
2x PowerNV 8335-GCA

2x Intel Xeon® CPU E5-2630 v4 (1334 $)
2x AMD EPYC 7351 (2200 $)
Intel Xeon Phi CPU 7210 (1881 $)

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

(ti
m

es
)

1.00
1.75

3.03 3.26
3.63

6.29
6.81

(a)
0

500
1000
1500
2000
2500
3000
3500
4000
4500

Co
st

 o
f p

ro
ce

ss
in

g
po

we
r

of
 1

0
00

0
ev

en
ts

 /
s (

$)

4220.94

3525.45 3352.34

2649.26

(b)

FIGURE 5 (a) Performance of Cross Kalman against the scalar implementation of the fit across several architectures (higher is better). The best
configuration for each architecture in terms of active threads is used, shown in Figure 6 . The leftmost bar represents the scalar implementation,
running on a Xeon E5-2630 v3 processor. When running Cross Kalman on the same processor, we observe a 3.03x speedup. (b) Price required
to obtain a throughput of 10000 events per second (lower is better). The Intel processors and AMD EPYC 7351 pricing were obtained from
https://ark.intel.com and https://www.theregister.co.uk/2017/06/20/amd_epyc_launch/ respectively, in September, 2017. TheXeon Phi processor
shows a better price for throughput ratio than its competitors.

higher arithmetic intensity. We observe the same scaling for single and double precision. Single precision produces a deviation from the expected
results in 1% of the experiments, deeming it unacceptable to current physics standards.

A cross-architecture performance comparison of Mathtest is shown in Figure 8 . Panel (a) shows the speedup of the double precision tests.
The improvement we observe from Haswell to Broadwell is 11%, instead of the 20% we observed in Cross Kalman. We attribute this to the fact
tests do not use cache, as opposed to Cross Kalman. Many-core architectures outperform all the other architectures under study, and the two best
performing architectures have access to high bandwidth memory MCDRAM and HBM2 respectively.

Panel (b) factors in the price of the processors. Out of themulti-core architectures under study, AMDEPYC obtains the best price per throughput
ratio, at 87% of the price of our Broadwell processor. Consumer-grade graphics cards are significantly cheaper than other architectures; Radeon
R9 Nano obtains the same throughput as the Broadwell processor for 12% of the price, or 37% of the price of a Xeon Phi.

A single precisionMathtest speedup plot is shown in (c). The speedup across Intel architectures is the same as in double precision. The compara-
tive performance of Tesla is lower than in double precision, whereas for the consumer-grade graphics cards it is higher. The ratio of double precision
floating point units in Tesla is higher than in the other graphics cards, which explains this divergence. The performance speedup across Tesla and
Radeon RX Vega is 1.43x, similar to the ratio between the memory bandwidths of both architectures: 720.9/483.8 = 1.49x. We factor in the price
of the architectures in the single precision case in (d). The performance benefit frommoving to single precision was 2.15x on the Intel architectures,
2.29x on TITAN X, 2.40x on Radeon R9 Nano, 2.30x on Radeon RX Vega and 1.88x on Tesla. Therefore, the most economical architectures remain
the consumer-grade graphics cards. Nevertheless, we do not consider the transfer time in this comparisons, in the same way we do not take into
account the time to transpose the data into Structure of Arrays (SOA) for all architectures. In order to do such measurements, one would have to
implement the Cross Kalman filter in Gaudi for all architectures, and explore different pipelining methods for transferring the data to the graphics
cards, which is out of the scope of the Mathtest software. We discuss the integration of Cross Kalman in Gaudi for x86 architectures in section 4.

194 appendix b

1 2 4 8 16 32 64 128 256
Active processors

1e+06

1e+07

1e+08

Th
ro

ug
hp

ut
 (f

it
an

d
sm

oo
th

er
 /

s)
2x Intel Xeon® CPU E5-2630 v3
2x Intel Xeon® CPU E5-2630 v4
Intel Xeon Phi CPU 7210

2x PowerNV 8335-GCA
Cavium ThunderX Dual 48 Core (ARM64)
2x AMD EPYC 7351

(a)

2 8 32 128
Active processors

0

1

2

4

8

16

32

64

128

Sp
ee

du
p

(ti
m

es
)

(b)
2 8 32 128

Active processors

0.2

0.4

0.6

0.8

1.0

Pa
ra

lle
l e

ffi
cie

nc
y

(c)

FIGURE 6 (a) Throughput of Cross Kalman across various architectures. For each architecture, an increasing number of processors is enabled.
Additional SMTs are only used on high core counts, when all physical processors have already been enabled. Scaling on ThunderX, PowerNV and
Xeon Phi is close to linear, and we observe little gain from enabling SMT. The remaining Xeon processors have a higher performance for lower
core counts, but show no performance gain when activating HyperThreads. (b) Speedup against number of active processors. (c) Parallel efficiency
against active processors. The PowerNV processors shows no performance degradation using all its physical cores. In contrast, Xeon Phi shows a
parallel efficiency of 85% (64 processors), ThunderX 68% (96 processors), E5-2630 v3 43% (16 processors), E7-8890 v3 40% (72 processors) and
E5-2683 v4 45% (32 processors).

Figure 9 shows a Roofline model 20 of the Cross Kalman Mathtest synthetic benchmark. The Roofline model relates the arithmetic intensity
of an algorithm (or specific implementation thereof) against its floating point performance. The arithmetic intensity is the ratio of floating point

appendix b 195

scalar 128 256 512
Vector width (bits)

1e+06

1e+07

Th
ro

ug
hp

ut
 (f

it
/ s

)

Single precision test
Double precision test

scalar 128 256 512
Vector width (bits)

1e+06

1e+07

Th
ro

ug
hp

ut
 (s

m
oo

th
er

 /
s)

Single precision test
Double precision test

FIGURE 7 Throughput of program as vector width increases, for single and double precision, under Intel Xeon Phi 7210. Left: fit throughput. Right:
smoother throughput. The smoother scales better than the fit for wider vector units, due to its higher arithmetic intensity.

operations (FLOPs) executed per bytes transferred from or to main memory. The Roofline plot also shows the peak floating point performance
and memory bandwidth of the hardware platform on which the measurements were performed, bounding the maximum attainable performance
for a given program. A higher arithmetic intensity means that the program under study is able to take better advantage of the platform’s peak
performance, ideally avoiding memory bottlenecks.

Platform rooflines can either depict theoretical peak bandwidths and floating point performances or actual sustained performance bounds. In
Figure 9 the horizontal upper lines depict the theoretical peak floating point performances. The diagonal roof lines, however, are Triad streaming
bandwidths, offering a tighter and more realistic bound for memory-bound applications. We ran the Roofline benchmarks with 223 synthetic
events. A high number of experiments is required in order to avoid data being cached from its generation to its execution, which would affect the
effective arithmetic intensity of the application. Nevertheless we notice a small additional performance gain particularly on the Xeon Phi and EPYC
platforms, which we attribute to data caching. This can be seen in Figures 9 a and 9 b where the benchmark performance is slightly above the
memory bandwidth roofline.We obtain the total FLOPS by counting executed floating point instruction using Intel SDE and NVIDIA nvprof for the
respective CPU/GPU platforms. Since accurate memory transfer counts are difficult to measure we count the number of bytes read or written by
code inspection. These two figures allow us to calculate the arithmetic intensity, and together with accurate time measurements, the performance
of the Cross Kalman core algorithm as implemented in theMathtest benchmark. As can be seen in Figure 9 the algorithm’s performance is on all but
one of the tested hardware platforms in the arithmetic-intensity regime limited bymemory bandwidth and not peak floating point performance. The
notable exception is seen in Figure 9 d where the low peak double precision FLOP performance (190GFLOP/s) and high memory bandwidth (336.5
GB/s) of the NVIDIA GTX TITAN X Maxwell platform make it a particularly easy to achieve peak performance even at low arithmetic intensities.

4 INTEGRATION
Integrating the Cross Kalman proto-application into the LHCb framework codebase requires a number of code changes and in some cases a
redesign of data structures. In addition to the existing Kalman filter implementation TrackMasterFitter (TMF), we have created the TrackVectorFitter
(TVF) package. As the LHCb framework currently only supports the x86 architecture family, our framework implementation targets specifically
this architecture. Naturally we still take advantage of the CPUs SIMD extensions when available.

In Cross Kalman, the input and output data are assumed to be in the SOA layout. In the LHCb framework, however, we can not rely on this
assumption. In fact, in its current current version data is still mostly stored in Array of Structures (AOS) layout. Hence, TVF includes not only the
Kalman filter and smoother processes, but also the generation of the data structures for each Kalman filter step. A detailed performance analysis
revealed that data generation and transformation has a significant impact on overall performance. Therefore, data layout choices must be carefully
considered.

In order to avoid data copies in TVF, we employ the static schedulers prior to the data generation. This process initializes all the data pointers,
permitting the data to be constructed in-place. Nevertheless, the current framework implementation will still create a temporary copy of the

196 appendix b

2x Intel Xeon® CPU E5-2630 v3 (1334 $)
2x Intel Xeon® CPU E5-2630 v4 (1334 $)
2x AMD EPYC 7351 (2200 $)
NVIDIA GTX TITAN X Maxwell (800 $)

AMD Radeon R9 Nano (500 $)
AMD Radeon RX Vega 64 (620 $)
Intel Xeon Phi CPU 7210 (1881 $)
NVIDIA TESLA P100 Pascal (7251 $)

0
1
2
3
4
5
6
7
8
9

Sp
ee

du
p

(ti
m

es
)

1.00 1.11
2.10

2.93
3.54

3.97
4.88

6.97

(a) Double precision Mathtest fit speedup.
0

200

400

600

800

1000

1200

1400

Co
st

 o
f p

ro
ce

ss
in

g
po

we
r

of
 1

0
00

0
fit

s /
 s

($
)

1403.42

1263.43

1100.79

287.58

148.79 164.17

405.82

1094.22

(b) Price per throughput (double precision).

0
1
2
3
4
5
6
7
8
9

Sp
ee

du
p

(ti
m

es
)

1.00 1.11
1.94

3.12
3.94 4.25

4.88

6.09

(c) Single precision Mathtest fit speedup.
0

100

200

300

400

500

600

Co
st

 o
f p

ro
ce

ss
in

g
po

we
r

of
 1

0
00

0
fit

s /
 s

($
)

652.28

586.74
554.31

125.53

62.04 71.26

188.48

582.31

(d) Price per throughput (single precision).

FIGURE 8 Mathtest synthetic benchmarks across architectures, in single and double precision. All tests are validated, and the configuration satu-
rating each architecture is shown here. (a) Speedup across architectures of double precision Mathtest fit (higher is better). Many-core architectures
show an improvement over multi-core architectures. Both Intel Xeon Phi and NVIDIA Pascal benefit from a higher memory bandwidth over other
architectures. (b) Price per performance for the double precision tests (lower is better). Consumer-grade accelerators show the best price per per-
formance ratio. (c) (d) Speedup and price per performance for single precision tests. Intel architectures show the same behaviour as in double
precision. Consumer-grade graphics cards are comparatively better in single precision than in double precision. We observe 2.15x on the Intel
architectures, and up to 2.40x on the AMD Radeon R9 Nano, when moving to single precision. The Intel processors and graphics cards pricing
estimates were obtained from https://ark.intel.com and https://amazon.com respectively.

generated data in AOS. Additionally, the framework expects the data to be in an AOS layout at the end of TVF and must be therefore retransposed.
More work in the LHCb framework on the Node structure may be required to remove the existing inefficient data layout.

The projection and noise matrices are the only two exceptions to the in-place generation of data structures in TVF. In the forward filter, the
calculation of node k requires the projection and noise matrix from the same node k. At the same time in the backward filter, the calculation of node
k requires the projection and noise matrix from the previous node k + 1 (recall that indexing in the backward filter is done in reverse). Given that
tracks have to be processed in stages, fulfilling these two conditions cannot always be guaranteed. Figure 10 depicts this problem. If projection
matrices are generated in-place, pre iteration 1 of the backward filter cannot fetch the previous data without swapping, as it would require an
iteration containing nodes 0-2 1-2.

appendix b 197

1/4 1/2 1 2 4 8 16 32 64
Arithmetic intensity [FLOP/Byte]

 16

 64

 256

 1024

 4096

P
er

fo
rm

an
ce

 [G
FL

O
P

/s
]

52 GB/s82 GB/s

424 GB/s

Intel Xeon® E5-2630 v3
AMD EPYC 7351

Intel Xeon Phi 7210

(a) Single precision CPU comparison.
1/8 1/4 1/2 1 2 4 8 16 32

Arithmetic intensity [FLOP/Byte]

 8

 32

 128

 512

 2048

P
er

fo
rm

an
ce

 [G
FL

O
P

/s
]

52 GB/s82 GB/s

424 GB/s

Intel Xeon® E5-2630 v3
AMD EPYC 7351

Intel Xeon Phi 7210

(b) Double precision CPU comparison.

1/4 1/2 1 2 4 8 16 32 64
Arithmetic intensity [FLOP/Byte]

 128

 512

 2048

 8192

P
er

fo
rm

an
ce

 [G
FL

O
P

/s
]

549 GB/s

337 GB/s

NVIDIA TESLA P100 Pascal
NVIDIA GTX TITAN X Maxwell

(c) Single precision GPU comparison.
1/8 1/4 1/2 1 2 4 8 16 32

Arithmetic intensity [FLOP/Byte]

 16

 64

 256

 1024

 4096

P
er

fo
rm

an
ce

 [G
FL

O
P

/s
]

549 GB/s

337 GB/s

NVIDIA TESLA P100 Pascal

NVIDIA GTX TITAN X Maxwell

(d) Double precision GPU comparison.

FIGURE 9 Roofline models of various CPU and GPU platforms and performances of the synthetic Kalman filter benchmark on the respective
systems. Panels (a) and (b) show arithmetic intensity and performance of the core algorithm on Intel Xeon E5-2630 v3, Intel Xeon-Phi 7210 (KNL)
and the AMD EPYC 7351 platform, allowing a performance comparison between LHCb’s current production platform and two contemporary high
core-count CPUs. Panels (c) and (d) compare an NVIDIA high-end consumer GPU (TITAN X) with one of NVIDIA’s HPC oriented GPU models
(P100). We note that our Kalman filter implementation exhibits an arithmetic intensity well below the memory bandwidth / peak floating-point
performance sweet spot on all tested platforms. This renders its performance memory-bandwidth limited.

In order to deal with these exceptions, projection and noise matrices are kept as AOS and transposed upon request on each iteration. This
process was found to be more efficient than generating SOAs and swapping.

5 VALIDATION
We have employed several techniques in order to validate the results generated by the Cross Kalman algorithms. The synthetic benchmark Cross
Kalman Mathtest calculates a checksum of all executed fits, which are validated against a precomputed sequential implementation. Furthermore
we have developed a binary input datatype and an extractor for the LHCb software. The extractor can be executed alongside the original LHCb

198 appendix b

it Pre scheduler vector Main scheduler vector

#0: { 0-0 1-0 } { 0-4 1-2 }

#1: { 0-1 1-1 } { 0-5 1-3 }

#2: { 0-2 2-0 } { 0-6 2-2 }

#3: { 0-3 2-1 } { 0-7 2-3 }

FIGURE 10 Iterations of Pre and Main schedulers illustrating the need for a projection and noise matrix swap. For each iteration in Pre and Main,
two nodes are processed at a time, as the schedule would be generated with SSE and double precision. A scheduled vector is written in the notation
particle number - node number, the same used in Figure 3 . The backward fit in pre iteration 1 requires data from the previous nodes, that is, 0-2 1-2.
However, no such configuration was generated, thus requiring data swapping. A similar situation can be observed in the backward fit pre iteration 3.

Kalman filter program TrackMasterFitter, to extract and store input data and result from the production filter execution. Cross Kalman is able to
read this data as input and use it to cross-check the generated result with the expected result.

Our framework implementation of Cross Kalman, TrackVectorFitter, is already available to LHCb users and serves as the foundation for the
numerical results described in this section. We have validated the physics performance of TVF against the original implementation under the
current LHCb run conditions, and also under the foreseen conditions of the upgrade. In the current scheme, the number of collisions per bunch
crossing in the LHCb detector is less than 2, whereas in the upgrade it is proposed to increase to more than 7. This will increase the number of
tracks to reconstruct and the throughput required in the filter roughly by a factor 5.

The LHCb experiment uses Monte Carlo simulation to generate validation data sets. Particle collisions and their interaction with the detector
are simulated. This simulation generates a data set that can be processed by the LHCb reconstruction software. Finally the reconstructed particles
are compared to the Monte Carlo generated ground truth.

Track reconstruction validation is done using three metrics 21. The reconstruction efficiency compares the reconstructed tracks to the expected
tracks reported by the Monte Carlo truth. The clone rate reports how many track equivalent track pairs were found. The ghost rate reports how
many tracks were reconstructed with nodes belonging to different particles or noise. Finally, tracks are categorized by their physical properties and
category statistics are compared to statistics from the ground truth.

Comparing the Cross Kalman implementation TVF to the original track filter TMF we observe an identical reconstruction efficiency, clone rate
and ghost rate under all tested scenarios. While the reconstruction of the track itself does not depend on the fit, the final track χ2 is used in
the different categories as a track quality cutoff. Hence, the identical reconstruction efficiency between the two algorithms validates TVF for its
physical properties.

A second test on a smaller sample has been performed, consisting in a track-by-track comparison of physical properties and fit results, such as
the χ2 of the final tracks. It shows a perfect match between TMF and TVF.

We have checked the performance of TVF against TMF under various scenarios. Table 1 shows comparative execution times for LHCb nightly
tests. These tests are representative of the conditions under which the LHCb reconstruction runs in the production environment.

Test name TMF (AVX) TVF SSE2 TVF AVX2+FMA Overall reconstruction speedup
magup2016 13.518 12.817 11.504 1.09x
baseline-upgrade 93.713 93.839 91.014 1.03x
sim08 8.307 8.134 7.986 1.02x

TABLE 1 LHCb test times in seconds. All tests are run on a single core of an Intel Xeon E5-2650 v3. All timings refer to the algorithm TrackBest-
TrackCreator, configured with different filter settings. TMF (TrackMasterFitter) is the original filter implementation. Internally, it executes a vertically
vectorized code optimized for AVX on this setup. TVF (TrackVectorFitter) refers to our implementation, compiled with either the SSE2 exten-
sion (default setting for x86_64) or AVX2+FMA. The overall reconstruction speedup refers to the entire reconstruction time of the test, compared
between TMF and TVF AVX2+FMA.

It is worth noting that the original implementation TMF has specializations of its Kalman filter code targeting concrete vector extensions. In the
machine under analysis the program chooses the AVX implementation, as it is supported by the E5-2650 v3 processor.

appendix b 199

We observe a varying performance depending on the test under execution. magup2016 shows gains of up to 9% in the overall reconstruction
time, whereas baseline-upgrade and sim08 gains in TVF do not seem to impact much the overall performance. In the case of baseline-upgrade, we
believe this is due to the configuration of such test. It uses a full geometry setting in its current form, which dominates the time distribution of the
fit. We expect its performance to improve in the future.

6 CONCLUSIONS AND OUTLOOK
In this work we have presented Cross Kalman, an algorithm that is able to efficiently perform low-rank Kalman filters. Cross Kalman is particularly
optimized for the LHCb particle tracking use case, but the presented algorithms and data structures can be applied to other situations where a
large number of low-rank Kalman filters are used. Using this algorithm we were able to obtain up to 3x speedup over the previous scalar solution
on the same hardware platform. Our implementation is flexible enough to accommodate for any kind of SIMD architecture and we have tested it a
wide array of architectures. The choice of the Decreasing-Time Algorithm as a scheduling algorithm should be revisited, and we intend to explore
other heuristics in the future. Our data structures allow us to efficiently perform the Kalman filter and smoother of many independent particles in
parallel. Given the specific nature of our problem instances, it may be possible to reuse data structures across different particle trajectories, and
further decrease the memory footprint of our application.

In addition, we have showed that single precision performance scales similarly to its double precision counterpart. An in-depth analysis of the
precision requirements and numerical stability of the algorithm, taking into account also the possibility of alternative mathematical formulations,
should be carried out. We expect that moving to single-precision and thus doubling the arithmetic intensity of our algorithms will significantly
improve performance. Our software is validated and has been integrated in the LHCb codebase under the name TrackVectorFitter, making the
overall reconstruction up to 9% faster for certain datasets.

We have verified that our implementation is able to scale to full hardware nodes and is able to adapt to the architectures under study. As
expected enabling SMT does not yield further performance improvements with the notable exception of Intel Xeon Phi, which could be due to its
higher memory throughput. This architecture stands out as a candidate for joining the computing infrastructure of LHCb over the next few years,
given its flexibility supporting the x86_64 instruction set, its high memory throughput from the on-package MCDRAM and its competitive price
point-throughput ratio. However, other algorithms used in the LHCb software framework need to be adapted to make the most out of many-core
architecture before a more definite answer can be given to the suitability of many-core hardware platforms such as Intel Xeon Phi for LHCb’s
software framework.

We have evaluated accelerators in the context of our synthetic benchmark Cross Kalman Mathtest. Consumer-grade graphics cards show a
competitive price per throughput ratio, an effect that is magnified when moving to single precision. In order to evaluate the impact of the required
data transmissions in graphics cards, a Gaudi demonstrator would have to be developed. We intend to port Cross Kalman to GPU accelerators and
further analyze our software scalability.

Given the low arithmetic intensity of our formulation, our application utilizes efficiently the processors under study, achieving peak floating
point performance on all benchmarked platforms. We will continue to track the performance of modern hardware architectures and adapt our
software to it, and observe the evolution of the different platforms. At the same time a more compute intensive formulation or improvements in
the implementation’s cache-locality could offer significant performance gains.

Acknowledgements
The authors would like to thank the High-Throughput Computing Collaboration at CERN openlab for fruitful discussions through the process of
designing and writing the presented software, and early access to Intel hardware. Thanks to C. Potterat for his contributions on the validation of
the software. Thanks to F. Lemaitre for his contribution of the vectorized transposition code, and to O. Bouizi and S. Harald for the low-level code
discussions and for providing early results and insight on the Xeon Phi architecture. Thanks to R. Nobre, currently working at the SPeCS research
group at Faculdade de Engenharia da Universidade do Porto (FEUP), for significant improvements to the performance of the CUDA and OpenCL
Mathtest modules. In addition, thanks to W. Hulsbergen and R. Aaij for the mathematical discussions and data structure design. Finally, thanks to
N. Neufeld and A. Riscos Núñez for their guidance and support.

References
1. The LHCb Collaboration . Framework TDR for the LHCb Upgrade: Technical Design Report. CERN-LHCC-2012-007. LHCb-TDR-12: ; 2012.
2. The LHCb Collaboration . LHCb Trigger and Online Upgrade Technical Design Report. CERN-LHCC-2014-016. LHCB-TDR-016: ; 2014.

200 appendix b

3. Kálmán R. E.. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering. 1960;82(1):35–45.
4. Mcgee L. A., Schmidt S. F.. Discovery of the Kalman filter as a practical tool for aerospace and industry. : ; 1985.
5. Houtekamer P. L., Mitchell H. L.. Data Assimilation Using an Ensemble Kalman Filter Technique. Monthly Weather Review. 1998;126(3):796–

811.
6. Welch G., Bishop G.. An Introduction to the Kalman Filter. : Chapel Hill, NC, USA; 1995.
7. HulsbergenW.D.. The global covariancematrix of tracks fittedwith a Kalman filter and an application in detector alignment.Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2009;600(2):471 - 477.
8. Cerati G., Elmer P., Lantz S., et al. Kalman Filter Tracking on Parallel Architectures. Journal of Physics: Conference Series. 2015;664(7):072008.
9. Lin Zhiyun, Wang Chen. Scheduling parallel Kalman filters for multiple processes. Automatica. 2013;49(1):9 - 16.

10. Lu Shiyuan, Lin Zhiyun, Zheng Ronghao, Yan Gangfeng. Scheduling parallel Kalman filters with quantized deadlines. Systems & Control Letters.
2015;86:9 - 15.

11. Huang M. Y., Wei S. C., Huang B., Chang Y. L.. Accelerating the Kalman Filter on a GPU. In: :1016-1020; 2011.
12. Cámpora Pérez D. H.. LHCb Kalman filter cross-architecture studies. Journal of Physics: Conference Series. ;:to appear.
13. Cámpora Pérez D. H., Awile O., Potterat C.. A high-throughput Kalman filter for modern SIMD architectures. Euro-Par 2017: Parallel Processing

Workshops. ;:to appear.
14. Aaij R., Fontana M., Le Gac R., et al. Upgrade trigger: Biannual performance update. : ; 2017.
15. Mertens S.. The Easiest Hard Problem: Number Partitioning. arXiv:cond-mat/0310317. 2003;. arXiv: cond-mat/0310317.
16. Gou C., Kuzmanov G., Gaydadjiev G. N.. SAMS Multi-layout Memory: Providing Multiple Views of Data to Boost SIMD Performance. In: ICS

’10:179–188ACM; 2010; New York, NY, USA.
17. Barrand G., others . GAUDI - A software architecture and framework for building HEP data processing applications. Comput. Phys. Commun..

2001;140:45-55.
18. Fog A.. VCL C++ vector class library. 2012.
19. Karpiński P., McDonald J.. A High-performance Portable Abstract Interface for Explicit SIMD Vectorization. In: PMAM’17:21–28ACM; 2017;

New York, NY, USA.
20. Williams S., Waterman A., Patterson D.. Roofline: an insightful visual performance model for multicore architectures. Communications of the

ACM. 2009;52(4):65.
21. Schiller M.. Track reconstruction and prompt K0

S production at the LHCb experiment. Dissertation,University of Heidelberg,2011.

appendix b 201

R E F E R E N C E S

[1] D. H. Cámpora Pérez, N. Neufeld, and A. Riscos Núñez.
“A Fast Local Algorithm for Track Reconstruction on Par-
allel Architectures”. In: 2019 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW).
2019, pp. 698–707.

[2] D. H. Cámpora Pérez and O. Awile. “An efficient low-
rank Kalman filter for modern SIMD architectures”. In:
Concurrency and Computation: Practice and Experience 30.23
(Dec. 2018), e4483.

[3] T. L. Collaboration et al. “The LHCb Detector at the LHC”.
In: Journal of Instrumentation 3.08 (Aug. 2008), S08005–
S08005.

[4] E. Mobs. “The CERN accelerator complex - August 2018”.
In: The CERN accelerator complex Octobre 2016 (Aug. 2018).

[5] R. Aaij et al. Expression of Interest for a Phase-II LHCb Up-
grade: Opportunities in flavour physics, and beyond, in the
HL-LHC era. Feb. 2017.

[6] LHCb Collaboration. LHCb Tracker Upgrade Technical De-
sign Report. Feb. 2014.

[7] LHCb Collaboration. LHCb VELO Upgrade Technical Design
Report. Nov. 2013.

[8] O. Callot. FastVelo, a fast and efficient pattern recognition
package for the Velo. Jan. 2011.

[9] R. Quagliani. Study of Double Charm B Decays with the LHCb
Experiment at CERN and Track Reconstruction for the LHCb
Upgrade. Springer Theses. Cham: Springer International
Publishing, 2018.

[10] R. J. Ekelhof. “Studies for the LHCb SciFi Tracker”. PhD
thesis. Technische Universität Dortmund, Germany.

[11] LHCb Collaboration. LHCb PID Upgrade Technical Design
Report. Nov. 2013.

[12] M. T. Schiller. “Track reconstruction and prompt K0S pro-
duction at the LHCb experiment”. PhD thesis. University
of Heidelberg, Germany, 2011.

203

204 references

[13] O. Omelaenko et al. LHCb calorimeters : Technical Design
Report. CERN, 2000.

[14] LHCb Collaboration. LHCb Trigger and Online Upgrade
Technical Design Report. May 2014.

[15] T. Colombo et al. “The LHCb Online system in 2020:
trigger-free read-out with (almost exclusively) off-the-shelf
hardware”. In: Journal of Physics: Conference Series 1085
(Sept. 2018), p. 032041.

[16] P. Moreira, Kloukinas, and A. Marchioro. “The GBT : A
proposed architecure for multi-Gb/s data transmission in
high energy physics”. In: Proceedings of the Topical Workshop
on Electronics for Particle Physics TWEPP-07. CERN, 2007,
pp. 332–336.

[17] D. H. Cámpora Pérez, R. Schwemmer, and N. Neufeld.
“Protocol-Independent Event Building Evaluator for the
LHCb DAQ System”. In: IEEE Transactions on Nuclear Sci-
ence 62.3 (June 2015), pp. 1110–1114.

[18] B. Voneki et al. “Evaluation of 100 Gb/s LAN networks
for the LHCb DAQ upgrade”. In: 2016 IEEE-NPSS Real
Time Conference (RT). IEEE, June 2016, pp. 1–3.

[19] G. Barrand et al. “GAUDI - The software architecture and
framework for building LHCb data processing applica-
tions”. In: 11th International Conference on Computing in
High-Energy and Nuclear Physics (CHEP 2000). 2000, pp. 92–
95.

[20] B. Barney. Introduction to Parallel Computing. url: https:
//computing.llnl.gov/tutorials/parallel_comp/.

[21] G. Moore. “Cramming More Components Onto Integrated
Circuits”. In: Electronics 38.8 (Jan. 1965).

[22] N. Weste and D. Harris. CMOS VLSI Design: A Circuits
and Systems Perspective. Ed. by Pearson. 2011.

[23] R. Dennard et al. “Design of ion-implanted MOSFET’s
with very small physical dimensions”. In: IEEE Journal of
Solid-State Circuits 9.5 (Oct. 1974), pp. 256–268.

[24] H. Sutter. The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software. url: http://www.gotw.ca/
publications/concurrency-ddj.htm.

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

references 205

[25] G. M. Amdahl and G. M. “Validity of the single processor
approach to achieving large scale computing capabilities”.
In: Proceedings of the April 18-20, 1967, spring joint computer
conference on - AFIPS ’67 (Spring). New York, New York,
USA: ACM Press, 1967, p. 483.

[26] J. L. Gustafson and J. L. “Reevaluating Amdahl’s law”. In:
Communications of the ACM 31.5 (May 1988), pp. 532–533.

[27] M. J. Flynn. “Some Computer Organizations and Their
Effectiveness”. In: IEEE Transactions on Computers C-21.9
(Sept. 1972), pp. 948–960.

[28] J. L. Hennessy and D. A. Patterson. Computer architecture :
a quantitative approach. Morgan Kaufmann, 2011.

[29] S. Williams, A. Waterman, and D. Patterson. “Roofline”.
In: Communications of the ACM 52.4 (Apr. 2009), p. 65.

[30] M. Á. Martínez del Amor. “Aceleración de Simuladores
de Sistemas de Membranas Mediante Computación de
Altas Prestaciones con GPU”. PhD thesis. Universidad de
Sevilla, Spain, 2013.

[31] J. E. Stone, D. Gohara, and G. Shi. “OpenCL: A Parallel
Programming Standard for Heterogeneous Computing
Systems”. In: Computing in Science & Engineering 12.3 (May
2010), pp. 66–73.

[32] TOP500 Supercomputer Sites. url: https://www.top500.
org/.

[33] NVIDIA. CUDA C Programming Guide. url: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.

html.

[34] R. Wilton et al. “Arioc: high-throughput read alignment
with GPU-accelerated exploration of the seed-and-extend
search space”. In: PeerJ 3 (2015), e808.

[35] R. Wilton et al. “Arioc: GPU-accelerated alignment of short
bisulfite-treated reads”. In: Bioinformatics 34.15 (2018).

[36] S. Pawar, A. Stanam, and Y. Zhu. “Evaluating the com-
puting efficiencies (specificity and sensitivity) of graphics
processing unit (GPU)-accelerated DNA sequence align-
ment tools against central processing unit (CPU) align-
ment tool”. In: Journal of Bioinformatics and Sequence Analy-
sis 9.2 (2018), pp. 10–14.

https://www.top500.org/
https://www.top500.org/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

206 references

[37] M. D. Cranmer et al. “Bifrost: A Python/C++ Frame-
work for High-Throughput Stream Processing in Astron-
omy”. In: Journal of Astronomical Instrumentation 6.04 (2017),
p. 1750007.

[38] A. Recnik et al. “An efficient real-time data pipeline for
the CHIME Pathfinder radio telescope X-engine”. In: 2015
IEEE 26th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, 2015,
pp. 57–61.

[39] P. Sen and V. Singhal. “Event selection for MUCH of CBM
experiment using GPU computing”. In: 2015 Annual IEEE
India Conference (INDICON). IEEE, Dec. 2015, pp. 1–5.

[40] D. vom Bruch. “Online Data Reduction using Track and
Vertex Reconstruction on GPUs for the Mu3e Experiment”.
In: EPJ Web of Conferences 150 (Aug. 2017). Ed. by C. Ger-
main et al., p. 00013.

[41] A. Glazov et al. “Filtering tracks in discrete detectors
using a cellular automaton”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment 329.1-2 (May 1993),
pp. 262–268.

[42] D. Funke et al. “Parallel track reconstruction in CMS using
the cellular automaton approach”. In: Journal of Physics:
Conference Series 513.5 (June 2014), p. 052010.

[43] D. Rohr et al. “GPU-accelerated track reconstruction in
the ALICE High Level Trigger”. In: Journal of Physics: Con-
ference Series 898.3 (Oct. 2017), p. 032030.

[44] D. H. Cámpora Pérez. “A Study of a Parallel Implementa-
tion for the Pixel VELO Subdetector”. MA thesis. Univer-
sidad de Sevilla, Spain, 2013.

[45] LHCb Collaboration. Upgrade Software and Computing. Mar.
2018.

[46] T. Bird et al. VP Simulation and Track Reconstruction. Oct.
2013.

[47] G. Blelloch. “Scans as Primitive Parallel Operations”. In:
IEEE Transactions on Computers 38 (1987), pp. 1526–1538.

[48] H. Nguyen and NVIDIA Corp. GPU gems 3. Addison-
Wesley, 2008, p. 942.

[49] NVIDIA Research. CUB: Main Page. url: https://nvlabs.
github.io/cub/.

https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/

references 207

[50] R. H. C. Lopes, I. D. Reid, and P. R. Hobson. “A well-
separated pairs decomposition algorithm for k-d trees
implemented on multi-core architectures”. In: Journal of
Physics: Conference Series 513.5 (June 2014), p. 052011.

[51] C. Joram et al. LHCb Scintillating Fibre Tracker Engineering
Design Review Report: Fibres, Mats and Modules. Mar. 2015.

[52] D. A. Glaser. “Some Effects of Ionizing Radiation on the
Formation of Bubbles in Liquids”. In: Physical Review 87.4
(Aug. 1952), pp. 665–665.

[53] B. Friman. The CBM physics book : compressed baryonic matter
in laboratory experiments. Springer, 2011, p. 980.

[54] R. Frühwirth and M. Regler. Data analysis techniques for
high-energy physics. Cambridge University Press, 2000.

[55] P. Billoir. “Progressive track recognition with a Kalman-
like fitting procedure”. In: Computer Physics Communica-
tions 57.1-3 (Dec. 1989), pp. 390–394.

[56] R. Frühwirth. “Application of Kalman filtering to track
and vertex fitting”. In: Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detec-
tors and Associated Equipment 262.2-3 (Dec. 1987), pp. 444–
450.

[57] A. Fröhlich et al. MARC - track finding in the split field
magnet facility. July 1976.

[58] J. Olsson et al. “Pattern recognition programs for the JADE
jet-chambers”. In: Nuclear Instruments and Methods 176.1-2
(Oct. 1980), pp. 403–407.

[59] A. Pernia et al. “Use of R-trees to improve reconstruction
time in pixel detectors”. In: Proceedings of the CTD/WIT.
2019.

[60] D. Rohr et al. “ALICE HLT TPC Tracking of Pb-Pb Events
on GPUs”. In: Journal of Physics: Conference Series 396.1
(Dec. 2012), p. 012044.

[61] H. Kälviäinen et al. “Probabilistic and non-probabilistic
Hough transforms: overview and comparisons”. In: Image
and Vision Computing 13.4 (May 1995), pp. 239–252.

[62] G. W. Milligan and M. C. Cooper. “Methodology Review:
Clustering Methods”. In: Applied Psychological Measurement
11.4 (Dec. 1987), pp. 329–354.

208 references

[63] H. Eichinger. “Global methods of pattern recognition”.
In: Nuclear Instruments and Methods 176.1-2 (Oct. 1980),
pp. 417–424.

[64] L. McInnes, J. Healy, and S. Astels. “hdbscan: Hierarchical
density based clustering”. In: The Journal of Open Source
Software 2.11 (Mar. 2017), p. 205.

[65] D. Funke et al. “Parallel track reconstruction in CMS using
the cellular automaton approach”. In: Journal of Physics:
Conference Series 513.5 (June 2014), p. 052010.

[66] D. Cassel and H. Kowalski. “Pattern recognition in lay-
ered track chambers using a tree algorithm”. In: Nuclear
Instruments and Methods in Physics Research 185.1-3 (June
1981), pp. 235–251.

[67] Intel SPMD Program Compiler. url: https://ispc.github.
io/.

[68] V. Akishina and I. Kisel. “Parallel 4-Dimensional Cellu-
lar Automaton Track Finder for the CBM Experiment”.
In: Journal of Physics: Conference Series 762 (Oct. 2016),
p. 012047.

[69] X. Li and Z. Fang. “Parallel clustering algorithms”. In:
Parallel Computing 11.3 (Aug. 1989), pp. 275–290.

[70] LHCb Collaboration. “LHCb detector performance”. In:
International Journal of Modern Physics A 30.07 (Mar. 2015),
p. 1530022.

[71] Y. Amhis et al. Description and performance studies of the
Forward Tracking for a scintilating fibre detector at LHCb. Apr.
2014.

[72] S. Markidis et al. “NVIDIA Tensor Core Programmabil-
ity, Performance & Precision”. In: 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops
(IPDPSW). Mar. 2018, pp. 522–531. arXiv: 1803.04014.

[73] R. E. Kalman. “A New Approach to Linear Filtering and
Prediction Problems”. In: Journal of Basic Engineering 82.1
(Mar. 1960), p. 35.

[74] S. Gorbunov et al. “Fast SIMDized Kalman filter based
track fit”. In: Computer Physics Communications 178.5 (Mar.
2008), pp. 374–383.

[75] G. Cerati et al. “Kalman Filter Tracking on Parallel Archi-
tectures”. In: Journal of Physics: Conference Series 664.7 (Dec.
2015), p. 072008.

https://ispc.github.io/
https://ispc.github.io/
https://arxiv.org/abs/1803.04014

references 209

[76] D. Hugo and C. Pérez. “LHCb Kalman Filter cross ar-
chitecture studies”. In: Journal of Physics: Conference Series
898.3 (Oct. 2017), p. 032052.

[77] D. H. Cámpora Pérez et al. “Cross-architecture Kalman fil-
ter benchmarks on modern hardware platforms”. In: Jour-
nal of Physics: Conference Series 1085 (Sept. 2018), p. 032046.

[78] D. H. Cámpora Pérez, O. Awile, and C. Potterat. “A High-
Throughput Kalman Filter for Modern SIMD Architec-
tures”. In: Euro-Par 2017: Parallel Processing Workshops.
Springer International Publishing, 2018, pp. 378–389.

[79] A. P. Badalov. “Coprocessor integration for real-time event
processing in particle physics detectors”. PhD thesis. Uni-
versitat Ramon Llull, Spain, 2016.

[80] E. Zenker et al. “Alpaka - An Abstraction Library for
Parallel Kernel Acceleration”. In: 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops
(IPDPSW) (Feb. 2016), pp. 631–640. arXiv: 1602.08477.

[81] E. Gamma. Design patterns : elements of reusable object-
oriented software. Addison-Wesley, 1995, p. 395.

[82] R. Aaij et al. “Design and performance of the LHCb trigger
and full real-time reconstruction in Run 2 of the LHC”.
In: Journal of Instrumentation 14.04 (Apr. 2019), P04013–
P04013.

[83] P. Fernandez Declara et al. “A parallel-computing algo-
rithm for high-energy physics particle tracking and de-
coding using GPU architectures”. In: IEEE Access (2019),
pp. 91612–91626.

[84] M. Stahl. “Machine learning and parallelism in the recon-
struction of LHCb and its upgrade”. In: J. Phys. : Conf. Ser.
898 (2017) 042042 (Oct. 2017).

[85] R. Aaij et al. “Performance of the LHCb trigger and full
real-time reconstruction in Run 2 of the LHC”. In: JINST
14.04 (2019), P04013. arXiv: 1812.10790 [hep-ex].

[86] M. De Cian et al. Status of HLT1 sequence and path towards
30 MHz. Mar. 2018.

https://arxiv.org/abs/1602.08477
https://arxiv.org/abs/1812.10790

210 references

[87] C. IEEE Computer Society. Technical Committee on Mi-
croprogramming and Microarchitecture., V. ACM Special
Interest Group on Microprogramming., and ACM Special
Interest Group on Programming Languages. International
Symposium on Code Generation and Optimization : CGO 2004
: 20-24 March, 2004 : San Jose, California. IEEE Computer
Society, 2004, p. 325.

[88] H. C. Edwards, C. R. Trott, and D. Sunderland. “Kokkos:
Enabling manycore performance portability through poly-
morphic memory access patterns”. In: Journal of Parallel
and Distributed Computing 74.12 (2014), pp. 3202–3216.

	Dedication
	acknowledgments
	contents of the document
	Preliminaries
	LHCb
	A Large Hadron Collider beauty experiment
	Tracking subdetectors
	Particle identification system

	The Data Acquisition System
	Event readout
	Event building
	Event filtering

	The High Level Trigger
	The LHCb software upgrade

	Parallel computing
	Types of parallel processors
	Memory
	The Roofline model

	Graphics Processing Units
	GPUs as parallel coprocessors

	Parallel algorithms
	Decoding algorithms
	Velo decoding and clustering
	Velo clustering
	Velo estimate input size
	Prefix sum Velo clusters
	Mask clustering
	Physics efficiency

	UT decoding
	Overview of UT decoding

	SciFi decoding
	Muon decoding

	Track reconstruction
	Efficiency indicators
	Overview of track reconstruction methods
	Local methods
	Global methods

	Velo tracking
	Discussion

	Forward tracking
	Histogramming method
	Looking Forward

	Kalman filter
	Discussion

	Framework
	A framework for massively parallel physics reconstruction
	Framework design
	Control flow
	Data flow
	Framework performance
	Continuous integration

	Tracking sequence physics efficiency
	Velo reconstruction efficiency
	UT reconstruction efficiency
	Forward tracking efficiency

	Performance analysis
	Methodology
	HLT1 sequence performance analysis
	Parameter scans
	Velo sequence performance analysis

	Integration in Data Acquisition system

	Thesis results
	Conclusions
	Summary
	Publications
	Future work

	appendices
	A Fast Local Algorithm for Track Reconstruction on Parallel Architectures
	An Efficient Low-Rank Kalman Filter for Modern SIMD Architectures

